IDEAS home Printed from
   My bibliography  Save this article

La muestra de empresas en los modelos de predicción del fracaso: influencia en los resultados de clasificación || The Sample of Firms in Business Failure Prediction Models: Influence on Classification Results


  • García-Gallego, Ana

    () (Departamento de Economía y Estadística, Universidad de León (España))

  • Mures-Quintana, María-Jesús

    () (Departamento de Economía y Estadística, Universidad de León (España))


El objetivo de este artículo es la obtención de sendos modelos de predicción del fracaso empresarial en una muestra emparejada y otra aleatoria de pequeñas y medianas empresas con domicilio en Castilla y León (España), a fin de determinar si el poder predictivo de los modelos elaborados está afectado por el método utilizado para seleccionar la muestra objeto de cada estudio. Para ello, consideramos como variables independientes un conjunto de ratios financieros, que reducimos a partir de la aplicación previa de un análisis de componentes principales. Mediante regresión logística, identificamos los factores que mejor predicen el fracaso en ambas muestras, observándose diferencias no solo en las variables significativas, sino también en los resultados de clasificación, lo que conforma la influencia del método de muestreo en los modelos. || This paper focuses on the development of both failure prediction models on a paired sample and a random sample of small and medium-sized firms with head offices located in the region of Castilla y León (Spain), in order to prove if the predictive power of the developed models is affected by the method used to derive the sample aim of each study. To estimate both models, we consider a set of financial ratios as independent variables in each one, which is first reduced by the application of a principal components analysis. Next, a logistic regression analysis is applied to identify those variables that best explain and predict failure in the two samples, where differences in the significant variables and the classification results are observed, which confirms the influence of the sampling method on the business failure prediction results.

Suggested Citation

  • García-Gallego, Ana & Mures-Quintana, María-Jesús, 2013. "La muestra de empresas en los modelos de predicción del fracaso: influencia en los resultados de clasificación || The Sample of Firms in Business Failure Prediction Models: Influence on Classification," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 15(1), pages 133-150, June.
  • Handle: RePEc:pab:rmcpee:v:15:y:2013:i:1:p:133-150

    Download full text from publisher

    File URL:
    Download Restriction: no

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. repec:bla:joares:v:10:y:1972:i:1:p:167-179 is not listed on IDEAS
    2. Peel, MJ & Peel, DA & Pope, PF, 1986. "Predicting corporate failure-- Some results for the UK corporate sector," Omega, Elsevier, vol. 14(1), pages 5-12.
    3. Edmister, Robert O., 1972. "An Empirical Test of Financial Ratio Analysis for Small Business Failure Prediction," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 7(02), pages 1477-1493, March.
    4. Molinero, C Mar & Ezzamel, M, 1991. "Multidimensional scaling applied to corporate failure," Omega, Elsevier, vol. 19(4), pages 259-274.
    5. repec:bla:joares:v:4:y:1966:i::p:71-111 is not listed on IDEAS
    6. Antonio Trujillo-Ponce & Reyes Samaniego-Medina & Clara Cardone-Riportella, 2012. "Examining what best explains corporate credit risk: accounting-based versus market-based models," Working Papers 12.03, Universidad Pablo de Olavide, Department of Financial Economics and Accounting (former Department of Business Administration).
    7. Scott, James, 1981. "The probability of bankruptcy: A comparison of empirical predictions and theoretical models," Journal of Banking & Finance, Elsevier, vol. 5(3), pages 317-344, September.
    8. Dimitras, A. I. & Slowinski, R. & Susmaga, R. & Zopounidis, C., 1999. "Business failure prediction using rough sets," European Journal of Operational Research, Elsevier, vol. 114(2), pages 263-280, April.
    9. Andreas Charitou & Evi Neophytou & Chris Charalambous, 2004. "Predicting corporate failure: empirical evidence for the UK," European Accounting Review, Taylor & Francis Journals, vol. 13(3), pages 465-497.
    10. Altman, Edward I. & Marco, Giancarlo & Varetto, Franco, 1994. "Corporate distress diagnosis: Comparisons using linear discriminant analysis and neural networks (the Italian experience)," Journal of Banking & Finance, Elsevier, vol. 18(3), pages 505-529, May.
    11. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    12. Dimitras, A. I. & Zanakis, S. H. & Zopounidis, C., 1996. "A survey of business failures with an emphasis on prediction methods and industrial applications," European Journal of Operational Research, Elsevier, vol. 90(3), pages 487-513, May.
    13. repec:bla:joares:v:18:y:1980:i:1:p:109-131 is not listed on IDEAS
    14. repec:bla:joares:v:22:y:1984:i::p:83-86 is not listed on IDEAS
    15. S. Balcaen & H. Ooghe, 2004. "35 years of studies on business failure: an overview of the classical statistical methodologiesand their related problems," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 04/248, Ghent University, Faculty of Economics and Business Administration.
    16. Altman, Edward I., 1984. "The success of business failure prediction models : An international survey," Journal of Banking & Finance, Elsevier, vol. 8(2), pages 171-198, June.
    17. Palepu, Krishna G., 1986. "Predicting takeover targets : A methodological and empirical analysis," Journal of Accounting and Economics, Elsevier, vol. 8(1), pages 3-35, March.
    Full references (including those not matched with items on IDEAS)

    More about this item


    fracaso empresarial; ratios financieros; muestreo; regression logística; predicción; business failure; financial ratios; sampling; logistic regression; prediction;

    JEL classification:

    • C35 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C83 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Survey Methods; Sampling Methods
    • G33 - Financial Economics - - Corporate Finance and Governance - - - Bankruptcy; Liquidation


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pab:rmcpee:v:15:y:2013:i:1:p:133-150. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Publicación Digital - UPO) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.