Designing Ensemble-Based Models Using Neural Networks and Temporal Financial Profiles to Forecast Firms’ Financial Failure
Author
Abstract
Suggested Citation
DOI: 10.1007/s10614-024-10579-4
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jiaming Liu & Chong Wu & Yongli Li, 2019. "Improving Financial Distress Prediction Using Financial Network-Based Information and GA-Based Gradient Boosting Method," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 851-872, February.
- Sun, Lili & Shenoy, Prakash P., 2007. "Using Bayesian networks for bankruptcy prediction: Some methodological issues," European Journal of Operational Research, Elsevier, vol. 180(2), pages 738-753, July.
- Lukason, Oliver & Laitinen, Erkki K., 2019. "Firm failure processes and components of failure risk: An analysis of European bankrupt firms," Journal of Business Research, Elsevier, vol. 98(C), pages 380-390.
- Blum, M, 1974. "Failing Company Discriminant-Analysis," Journal of Accounting Research, Wiley Blackwell, vol. 12(1), pages 1-25.
- Kraus, Mathias & Feuerriegel, Stefan & Oztekin, Asil, 2020. "Deep learning in business analytics and operations research: Models, applications and managerial implications," European Journal of Operational Research, Elsevier, vol. 281(3), pages 628-641.
- Asyrofa Rahmi & Hung-Yuan Lu & Deron Liang & Dinda Novitasari & Chih-Fong Tsai, 2023. "Role of Comprehensive Income in Predicting Bankruptcy," Computational Economics, Springer;Society for Computational Economics, vol. 62(2), pages 689-720, August.
- Balcaen, Sofie & Ooghe, Hubert, 2006.
"35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems,"
The British Accounting Review, Elsevier, vol. 38(1), pages 63-93.
- S. Balcaen & H. Ooghe, 2004. "35 years of studies on business failure: an overview of the classical statistical methodologiesand their related problems," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 04/248, Ghent University, Faculty of Economics and Business Administration.
- du Jardin, Philippe, 2021. "Forecasting corporate failure using ensemble of self-organizing neural networks," European Journal of Operational Research, Elsevier, vol. 288(3), pages 869-885.
- Zeineb Affes & Rania Hentati-Kaffel, 2019. "Predicting US Banks Bankruptcy: Logit Versus Canonical Discriminant Analysis," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03045837, HAL.
- Hu, Yu-Chiang & Ansell, Jake, 2007. "Measuring retail company performance using credit scoring techniques," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1595-1606, December.
- Ligang Zhou & Kin Keung Lai, 2017. "AdaBoost Models for Corporate Bankruptcy Prediction with Missing Data," Computational Economics, Springer;Society for Computational Economics, vol. 50(1), pages 69-94, June.
- Eduardo Acosta-González & Fernando Fernández-Rodríguez & Hicham Ganga, 2019. "Predicting Corporate Financial Failure Using Macroeconomic Variables and Accounting Data," Computational Economics, Springer;Society for Computational Economics, vol. 53(1), pages 227-257, January.
- Laitinen, Ek, 1993. "Financial predictors for different phases of the failure process," Omega, Elsevier, vol. 21(2), pages 215-228, March.
- Daniel Berg, 2007. "Bankruptcy prediction by generalized additive models," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 23(2), pages 129-143, March.
- Stewart Thornhill & Raphael Amit, 2003. "Learning About Failure: Bankruptcy, Firm Age, and the Resource-Based View," Organization Science, INFORMS, vol. 14(5), pages 497-509, October.
- Philippe Jardin, 2021. "Forecasting bankruptcy using biclustering and neural network-based ensembles," Annals of Operations Research, Springer, vol. 299(1), pages 531-566, April.
- Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure - Reply," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 123-127.
- Liang, Deron & Lu, Chia-Chi & Tsai, Chih-Fong & Shih, Guan-An, 2016. "Financial ratios and corporate governance indicators in bankruptcy prediction: A comprehensive study," European Journal of Operational Research, Elsevier, vol. 252(2), pages 561-572.
- Rada Dakovic & Claudia Czado & Daniel Berg, 2010. "Bankruptcy prediction in Norway: a comparison study," Applied Economics Letters, Taylor & Francis Journals, vol. 17(17), pages 1739-1746.
- Geng, Ruibin & Bose, Indranil & Chen, Xi, 2015. "Prediction of financial distress: An empirical study of listed Chinese companies using data mining," European Journal of Operational Research, Elsevier, vol. 241(1), pages 236-247.
- Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
- Altman, Edward I. & Haldeman, Robert G. & Narayanan, P., 1977. "ZETATM analysis A new model to identify bankruptcy risk of corporations," Journal of Banking & Finance, Elsevier, vol. 1(1), pages 29-54, June.
- Chris Charalambous & Andreas Charitou & Froso Kaourou, 2000. "Comparative Analysis of Artificial Neural Network Models: Application in Bankruptcy Prediction," Annals of Operations Research, Springer, vol. 99(1), pages 403-425, December.
- Alexander Kücher & Stefan Mayr & Christine Mitter & Christine Duller & Birgit Feldbauer-Durstmüller, 2020. "Firm age dynamics and causes of corporate bankruptcy: age dependent explanations for business failure," Review of Managerial Science, Springer, vol. 14(3), pages 633-661, June.
- Sami Ben Jabeur & Nicolae Stef & Pedro Carmona, 2023. "Bankruptcy Prediction using the XGBoost Algorithm and Variable Importance Feature Engineering," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 715-741, February.
- Dambolena, Ismael G & Khoury, Sarkis J, 1980. "Ratio Stability and Corporate Failure," Journal of Finance, American Finance Association, vol. 35(4), pages 1017-1026, September.
- Glenn Milligan, 1981. "A monte carlo study of thirty internal criterion measures for cluster analysis," Psychometrika, Springer;The Psychometric Society, vol. 46(2), pages 187-199, June.
- Zeineb Affes & Rania Hentati-Kaffel, 2019. "Predicting US Banks Bankruptcy: Logit Versus Canonical Discriminant Analysis," Post-Print hal-03045837, HAL.
- D. Fernández-Arias & M. López-Martín & T. Montero-Romero & F. Martínez-Estudillo & F. Fernández-Navarro, 2018. "Financial Soundness Prediction Using a Multi-classification Model: Evidence from Current Financial Crisis in OECD Banks," Computational Economics, Springer;Society for Computational Economics, vol. 52(1), pages 275-297, June.
- Danny Miller & Peter H. Friesen, 1977. "Strategy‐Making In Context: Ten Empirical Archetypes," Journal of Management Studies, Wiley Blackwell, vol. 14(3), pages 253-280, October.
- Hyeongjun Kim & Hoon Cho & Doojin Ryu, 2022. "Corporate Bankruptcy Prediction Using Machine Learning Methodologies with a Focus on Sequential Data," Computational Economics, Springer;Society for Computational Economics, vol. 59(3), pages 1231-1249, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Philippe du Jardin, 2025. "A Quantification Approach of Changes in Firms' Financial Situation Using Neural Networks for Predicting Bankruptcy," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(2), pages 781-802, March.
- du Jardin, Philippe, 2015. "Bankruptcy prediction using terminal failure processes," European Journal of Operational Research, Elsevier, vol. 242(1), pages 286-303.
- Francesco Ciampi & Valentina Cillo & Fabio Fiano, 2020. "Combining Kohonen maps and prior payment behavior for small enterprise default prediction," Small Business Economics, Springer, vol. 54(4), pages 1007-1039, April.
- Christian Lohmann & Steffen Möllenhoff & Thorsten Ohliger, 2023. "Nonlinear relationships in bankruptcy prediction and their effect on the profitability of bankruptcy prediction models," Journal of Business Economics, Springer, vol. 93(9), pages 1661-1690, November.
- Youssef Zizi & Amine Jamali-Alaoui & Badreddine El Goumi & Mohamed Oudgou & Abdeslam El Moudden, 2021. "An Optimal Model of Financial Distress Prediction: A Comparative Study between Neural Networks and Logistic Regression," Risks, MDPI, vol. 9(11), pages 1-24, November.
- Bhanu Pratap Singh & Alok Kumar Mishra, 2016. "Re-estimation and comparisons of alternative accounting based bankruptcy prediction models for Indian companies," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 2(1), pages 1-28, December.
- Youssef Zizi & Mohamed Oudgou & Abdeslam El Moudden, 2020. "Determinants and Predictors of SMEs’ Financial Failure: A Logistic Regression Approach," Risks, MDPI, vol. 8(4), pages 1-21, October.
- du Jardin, Philippe & Séverin, Eric, 2011.
"Predicting corporate bankruptcy using a self-organizing map: An empirical study to improve the forecasting horizon of a financial failure model,"
MPRA Paper
44262, University Library of Munich, Germany.
- P. Du Jardin & E. Séverin, 2011. "Predicting Corporate Bankruptcy Using Self-Organising map: An empirical study to Improve the Forecasting horizon of financial failure model," Post-Print hal-00801878, HAL.
- fernández, María t. Tascón & gutiérrez, Francisco J. Castaño, 2012. "Variables y Modelos Para La Identificación y Predicción Del Fracaso Empresarial: Revisión de La Investigación Empírica Reciente," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 15(1), pages 7-58.
- Philippe Jardin, 2023. "Designing topological data to forecast bankruptcy using convolutional neural networks," Annals of Operations Research, Springer, vol. 325(2), pages 1291-1332, June.
- Eric Séverin & David Veganzones, 2021. "Can earnings management information improve bankruptcy prediction models?," Annals of Operations Research, Springer, vol. 306(1), pages 247-272, November.
- Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
- Apostolos G. Christopoulos & Ioannis G. Dokas & Iraklis Kollias & John Leventides, 2019. "An implementation of Soft Set Theory in the Variables Selection Process for Corporate Failure Prediction Models. Evidence from NASDAQ Listed Firms," Bulletin of Applied Economics, Risk Market Journals, vol. 6(1), pages 1-20.
- Keijo Kohv & Oliver Lukason, 2021. "What Best Predicts Corporate Bank Loan Defaults? An Analysis of Three Different Variable Domains," Risks, MDPI, vol. 9(2), pages 1-19, January.
- Şaban Çelik, 2013. "Micro Credit Risk Metrics: A Comprehensive Review," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 20(4), pages 233-272, October.
- Mohammad Mahdi Mousavi & Jamal Ouenniche, 2018. "Multi-criteria ranking of corporate distress prediction models: empirical evaluation and methodological contributions," Annals of Operations Research, Springer, vol. 271(2), pages 853-886, December.
- Jackson, Richard H.G. & Wood, Anthony, 2013. "The performance of insolvency prediction and credit risk models in the UK: A comparative study," The British Accounting Review, Elsevier, vol. 45(3), pages 183-202.
- Christian Lohmann & Thorsten Ohliger, 2020. "Bankruptcy prediction and the discriminatory power of annual reports: empirical evidence from financially distressed German companies," Journal of Business Economics, Springer, vol. 90(1), pages 137-172, February.
- Balcaen, Sofie & Ooghe, Hubert, 2006.
"35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems,"
The British Accounting Review, Elsevier, vol. 38(1), pages 63-93.
- S. Balcaen & H. Ooghe, 2004. "35 years of studies on business failure: an overview of the classical statistical methodologiesand their related problems," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 04/248, Ghent University, Faculty of Economics and Business Administration.
- Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
More about this item
Keywords
Ensemble-based models; Self-organizing neural networks; Bankruptcy prediction; Financial profiles;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:65:y:2025:i:1:d:10.1007_s10614-024-10579-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.