IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i23p10270-d1527968.html
   My bibliography  Save this article

The Impact of Industrial Agglomeration on Urban Carbon Emissions: An Empirical Study Based on the Panel Data of China’s Prefecture-Level Cities

Author

Listed:
  • Yunpeng Fu

    (School of Economics, Liaoning University, Shenyang 110036, China)

  • Zixuan Wang

    (School of Economics, Liaoning University, Shenyang 110036, China)

Abstract

In the context of accelerating global climate change, it has become increasingly important to study the vital relationship between industrial agglomeration and urban carbon emissions for sustainable development. The present study focuses on the influence of industrial agglomeration on urban carbon emissions, by investigating a sample of 280 prefecture-level cities in China from 2009 to 2021. Methodologically, this study empirically tests the effect of industrial agglomeration on the urban carbon emissions through the use of a spatial Durbin model and mediating effect model. The following are the main conclusions: first, the impact of industrial agglomeration on urban carbon emissions shows an inverted U-shaped relationship, which first intensifies and then inhibits, and has spatial spillover effect; second, industrial agglomeration has different impacts on urban carbon emissions in the eastern, central and western regions. Industrial agglomeration shows different impacts on urban carbon emissions between resource-based and non-resource-based cities. Industrial agglomeration shows different impacts on urban carbon emissions between old industrial cities and non-old industrial cities. Third, green technology innovation and green talent agglomeration mediate the relationship between industrial agglomeration and urban carbon emissions. This study highlights the significance of industrial agglomeration in promoting sustainable urban development and offers valuable insights for the planning and formulation of industrial development policies.

Suggested Citation

  • Yunpeng Fu & Zixuan Wang, 2024. "The Impact of Industrial Agglomeration on Urban Carbon Emissions: An Empirical Study Based on the Panel Data of China’s Prefecture-Level Cities," Sustainability, MDPI, vol. 16(23), pages 1-26, November.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:23:p:10270-:d:1527968
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/23/10270/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/23/10270/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao, Jun & Dong, Xiucheng & Dong, Kangyin, 2021. "How does producer services’ agglomeration promote carbon reduction?: The case of China," Economic Modelling, Elsevier, vol. 104(C).
    2. Doda, Baran & Gennaioli, Caterina & Gouldson, Andy & Grover, David & Sullivan, Rory, 2015. "Are corporate carbon management practices reducing corporate carbon emissions?," LSE Research Online Documents on Economics 60816, London School of Economics and Political Science, LSE Library.
    3. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    4. Krugman, Paul, 1991. "Increasing Returns and Economic Geography," Journal of Political Economy, University of Chicago Press, vol. 99(3), pages 483-499, June.
    5. Andreoni, James & Levinson, Arik, 2001. "The simple analytics of the environmental Kuznets curve," Journal of Public Economics, Elsevier, vol. 80(2), pages 269-286, May.
    6. Daron Acemoglu & Gino Gancia & Fabrizio Zilibotti, 2015. "Offshoring and Directed Technical Change," American Economic Journal: Macroeconomics, American Economic Association, vol. 7(3), pages 84-122, July.
    7. Yunling Ye & Sheng Ye & Haichao Yu, 2021. "Can Industrial Collaborative Agglomeration Reduce Haze Pollution? City-Level Empirical Evidence from China," IJERPH, MDPI, vol. 18(4), pages 1-22, February.
    8. Kena Mi & Rulong Zhuang, 2022. "Producer Services Agglomeration and Carbon Emission Reduction—An Empirical Test Based on Panel Data from China," Sustainability, MDPI, vol. 14(6), pages 1-19, March.
    9. Pingping Dai & Yuanyuan Lin, 2021. "Should There Be Industrial Agglomeration in Sustainable Cities?: A Perspective Based on Haze Pollution," Sustainability, MDPI, vol. 13(12), pages 1-22, June.
    10. Zeng, Dao-Zhi & Zhao, Laixun, 2009. "Pollution havens and industrial agglomeration," Journal of Environmental Economics and Management, Elsevier, vol. 58(2), pages 141-153, September.
    11. Gerben Panne, 2004. "Agglomeration externalities: Marshall versus Jacobs," Journal of Evolutionary Economics, Springer, vol. 14(5), pages 593-604, December.
    12. Ang, B.W. & Goh, Tian, 2019. "Index decomposition analysis for comparing emission scenarios: Applications and challenges," Energy Economics, Elsevier, vol. 83(C), pages 74-87.
    13. Qihang Xue & Caiquan Bai & Weiwei Xiao, 2022. "Fintech and corporate green technology innovation: Impacts and mechanisms," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 43(8), pages 3898-3914, December.
    14. Wenhui Zhang & Ge Zhou & Ziwen Song & Xintao Shi & Meiru Ye & Xirui Chen & Yuhao Xiang & Wenzhao Zheng & Pan Zhang, 2023. "Calculation of Carbon Emissions and Study of the Emission Reduction Path of Conventional Public Transportation in Harbin City," Sustainability, MDPI, vol. 15(22), pages 1-17, November.
    15. Xiaoling Zhang & Zhiwei Pan & Decai Tang & Zixuan Deng & Valentina Boamah, 2023. "Impact of Environmental Regulation and Industrial Agglomeration on Carbon Emissions in the Yangtze River Economic Belt," Sustainability, MDPI, vol. 15(10), pages 1-18, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinmei Wang & Dinghua Ou & Chang Shu & Yiliang Liu & Zijia Yan & Maocuo La & Jianguo Xia, 2025. "How Can We Achieve Carbon Neutrality During Urban Expansion? An Empirical Study from Qionglai City, China," Land, MDPI, vol. 14(8), pages 1-35, August.
    2. Kamer Ilgin Cakiroglu & Korkmaz Yildirim & Tunahan Haciimamoglu & Coskun Erkan, 2025. "From Entrepreneurship to Sustainable Futures: Investigating the Nexus Between New Business Density, Economic Growth, and Carbon Emissions," Sustainability, MDPI, vol. 17(12), pages 1-21, June.
    3. Man Gao & Feng Lan, 2025. "Specialized vs. Diversified Agglomeration: Which More Effectively Enhances Urban Comprehensive Carrying Capacity? Evidence from Chinese Cities," Sustainability, MDPI, vol. 17(20), pages 1-28, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin F. Quaas & Sjak Smulders, 2018. "Brown Growth, Green Growth, and the Efficiency of Urbanization," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(2), pages 529-549, October.
    2. Liu, Yazhou & Ren, Tiantian & Liu, Lijun & Ni, Jinlan & Yin, Yingkai, 2023. "Heterogeneous industrial agglomeration, technological innovation and haze pollution," China Economic Review, Elsevier, vol. 77(C).
    3. Quaas, Martin F. & Smulders, Sjak, 2008. "Pollution and the Efficiency of Urban Growth," Sustainability Indicators and Environmental Valuation Working Papers 44225, Fondazione Eni Enrico Mattei (FEEM).
    4. Xin Han & Feng Lu & Jun Hou & Xianming Kuang, 2022. "Impact of Haze Pollution on Industrial Agglomeration: Empirical Evidence From China," SAGE Open, , vol. 12(3), pages 21582440221, August.
    5. Peirong Chen & Ruhe Xie & Mingxuan Lu, 2020. "“Resource Conservation” or “Environmental Friendliness”: How do Urban Clusters Affect Total-Factor Ecological Performance in China?," IJERPH, MDPI, vol. 17(12), pages 1-28, June.
    6. Costantini, Valeria & Mazzanti, Massimiliano & Montini, Anna, 2013. "Environmental performance, innovation and spillovers. Evidence from a regional NAMEA," Ecological Economics, Elsevier, vol. 89(C), pages 101-114.
    7. Wu, JunJie & Segerson, Kathleen & Langpap, Christian, 2025. "What drives the long-term relationship between economic development and environmental quality? The role of spatial dispersion vs. agglomeration," Journal of Environmental Economics and Management, Elsevier, vol. 131(C).
    8. Yan, Sen & Sun, Xinyu & Zhang, Yurong, 2024. "High-speed railway ripples on the greenness: Insight from urban green vegetation cover," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    9. Sebri, Maamar, 2009. "La Zone Méditerranéenne Face à la Pollution de L’air : Une Investigation Econométrique [The Mediterranean Zone in front of Air pollution: an Econometric Investigation]," MPRA Paper 32382, University Library of Munich, Germany.
    10. George Halkos & Iacovos Psarianos, 2016. "Exploring the effect of including the environment in the neoclassical growth model," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 18(3), pages 339-358, July.
    11. Mazzanti, Massimiliano & Montini, Anna & Zoboli, Roberto, 2006. "Municipal Waste Production, Economic Drivers, and 'New' Waste Policies: EKC Evidence from Italian Regional and Provincial Panel Data," Climate Change Modelling and Policy Working Papers 12053, Fondazione Eni Enrico Mattei (FEEM).
    12. Raquel Ortega-Argilés, 2022. "The evolution of regional entrepreneurship policies: “no one size fits all”," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 69(3), pages 585-610, December.
    13. Soumyananda Dinda, 2018. "Production technology and carbon emission: long-run relation with short-run dynamics," Journal of Applied Economics, Taylor & Francis Journals, vol. 21(1), pages 106-121, January.
    14. Costantini, Valeria & Monni, Salvatore, 2008. "Environment, human development and economic growth," Ecological Economics, Elsevier, vol. 64(4), pages 867-880, February.
    15. Bartz, Sherry & Kelly, David L., 2008. "Economic growth and the environment: Theory and facts," Resource and Energy Economics, Elsevier, vol. 30(2), pages 115-149, May.
    16. Shu-Hong Wang & Ma-Lin Song & Tao Yu, 2019. "Hidden Carbon Emissions, Industrial Clusters, and Structure Optimization in China," Computational Economics, Springer;Society for Computational Economics, vol. 54(4), pages 1319-1342, December.
    17. Jingan Chen & Chengdong Yi & Yourong Wang & Tianyu Bi, 2022. "Do Honored Cities Achieve a Sustainable Development? A Quasi-Natural Experimental Study Based on “National Civilized City” Campaign in China," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
    18. Castells-Quintana, David & Dienesch, Elisa & Krause, Melanie, 2021. "Air pollution in an urban world: A global view on density, cities and emissions," Ecological Economics, Elsevier, vol. 189(C).
    19. Cheng, Qi & Yang, Jun, 2024. "Is green place-based policy effective in mitigating pollution? Firm-level evidence from China," Economic Analysis and Policy, Elsevier, vol. 83(C), pages 530-547.
    20. Bartz, Sherry & Kelly, David L., 2008. "Economic growth and the environment: Theory and facts," Resource and Energy Economics, Elsevier, vol. 30(2), pages 115-149, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:23:p:10270-:d:1527968. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.