IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i10p8308-d1151106.html
   My bibliography  Save this article

Impact of Environmental Regulation and Industrial Agglomeration on Carbon Emissions in the Yangtze River Economic Belt

Author

Listed:
  • Xiaoling Zhang

    (School of Law and Business, Sanjiang University, Nanjing 210012, China)

  • Zhiwei Pan

    (School of Management Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China)

  • Decai Tang

    (School of Law and Business, Sanjiang University, Nanjing 210012, China
    School of Management Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China)

  • Zixuan Deng

    (School of Geography, Nanjing Normal University, Nanjing 210023, China)

  • Valentina Boamah

    (School of Management Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China)

Abstract

Carbon reduction is an important aspect of achieving high-quality environmental development; environmental regulation and industrial agglomeration are important ways to affect carbon emissions. Therefore, studying the relationship between industrial agglomeration, environmental regulation, and carbon emissions has important theoretical and practical significance. Firstly, this article adopts the method of location entropy to measure the indicators of industrial agglomeration. Secondly, it proposes an environmental regulation indicator system based on the experience of previous scholars and measures the environmental regulation indicators using the entropy method. Next, eight types of energy consumption are used to measure carbon emissions based on the carbon emission coefficient method provided by the IPCC. Finally, based on the Moran index, the spatial correlation of carbon emission levels in various regions of the Yangtze River Economic Belt (YREB) is tested. A spatial econometric model was introduced to explore the relationship between industrial agglomeration, environmental regulation, and carbon emissions at a deeper level, and the following conclusions were drawn: (1) The regression coefficient of the spatial term of industrial agglomeration on carbon emissions is 0.848, which is significantly positive at the 10% level, indicating that under the influence of spatial effects, industrial agglomeration has a significant promoting effect on carbon emissions. (2) The regression coefficient of the spatial term of environmental regulation on carbon emissions is −0.011, which is significantly negative at the 10% level, indicating that environmental regulation has an inhibitory effect on carbon emissions under the influence of spatial effects. Based on the above conclusions, useful suggestions have been provided for optimizing industrial structure, improving environmental regulation levels, and alleviating carbon emission issues.

Suggested Citation

  • Xiaoling Zhang & Zhiwei Pan & Decai Tang & Zixuan Deng & Valentina Boamah, 2023. "Impact of Environmental Regulation and Industrial Agglomeration on Carbon Emissions in the Yangtze River Economic Belt," Sustainability, MDPI, vol. 15(10), pages 1-18, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:8308-:d:1151106
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/10/8308/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/10/8308/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao, Jun & Dong, Xiucheng & Dong, Kangyin, 2021. "How does producer services’ agglomeration promote carbon reduction?: The case of China," Economic Modelling, Elsevier, vol. 104(C).
    2. Smulders, Sjak & Tsur, Yacov & Zemel, Amos, 2012. "Announcing climate policy: Can a green paradox arise without scarcity?," Journal of Environmental Economics and Management, Elsevier, vol. 64(3), pages 364-376.
    3. Wu, Haitao & Xu, Lina & Ren, Siyu & Hao, Yu & Yan, Guoyao, 2020. "How do energy consumption and environmental regulation affect carbon emissions in China? New evidence from a dynamic threshold panel model," Resources Policy, Elsevier, vol. 67(C).
    4. Wu, Jianxin & Xu, Hui & Tang, Kai, 2021. "Industrial agglomeration, CO2 emissions and regional development programs: A decomposition analysis based on 286 Chinese cities," Energy, Elsevier, vol. 225(C).
    5. Xu, Yong & Li, Shanshan & Zhou, Xiaoxiao & Shahzad, Umer & Zhao, Xin, 2022. "How environmental regulations affect the development of green finance: Recent evidence from polluting firms in China," Renewable Energy, Elsevier, vol. 189(C), pages 917-926.
    6. Zhao, Jun & Jiang, Qingzhe & Dong, Xiucheng & Dong, Kangyin, 2020. "Would environmental regulation improve the greenhouse gas benefits of natural gas use? A Chinese case study," Energy Economics, Elsevier, vol. 87(C).
    7. Akihiro Otsuka & Mika Goto & Toshiyuki Sueyoshi, 2014. "Energy efficiency and agglomeration economies: the case of Japanese manufacturing industries," Regional Science Policy & Practice, Wiley Blackwell, vol. 6(2), pages 195-212, June.
    8. Lv, Zhike & Liu, Wangxin & Xu, Ting, 2022. "Evaluating the impact of information and communication technology on renewable energy consumption: A spatial econometric approach," Renewable Energy, Elsevier, vol. 189(C), pages 1-12.
    9. Lai, Aolin & Wang, Qunwei & Cui, Lianbiao, 2022. "Can market segmentation lead to green paradox? Evidence from China," Energy, Elsevier, vol. 254(PC).
    10. Li, Xuehui & Xu, Yangyang & Yao, Xin, 2021. "Effects of industrial agglomeration on haze pollution: A Chinese city-level study," Energy Policy, Elsevier, vol. 148(PA).
    11. Liu, Jin & Tian, Jiayu & Lyu, Wenjing & Yu, Yitian, 2022. "The impact of COVID-19 on reducing carbon emissions: From the angle of international student mobility," Applied Energy, Elsevier, vol. 317(C).
    12. Zhang, Wei & Li, Guoxiang & Guo, Fanyong, 2022. "Does carbon emissions trading promote green technology innovation in China?," Applied Energy, Elsevier, vol. 315(C).
    13. Lan, Fei & Sun, Li & Pu, Wenyan, 2021. "Research on the influence of manufacturing agglomeration modes on regional carbon emission and spatial effect in China," Economic Modelling, Elsevier, vol. 96(C), pages 346-352.
    14. Tuochen Li & Dongri Han & Shaosong Feng & Lei Liang, 2019. "Can Industrial Co-Agglomeration between Producer Services and Manufacturing Reduce Carbon Intensity in China?," Sustainability, MDPI, vol. 11(15), pages 1-15, July.
    15. Ding, Jian & Liu, Baoliu & Shao, Xuefeng, 2022. "Spatial effects of industrial synergistic agglomeration and regional green development efficiency: Evidence from China," Energy Economics, Elsevier, vol. 112(C).
    16. Al-Hadi, Ahmed & Al-Abri, Almukhtar, 2022. "Firm-level trade credit responses to COVID-19-induced monetary and fiscal policies: International evidence," Research in International Business and Finance, Elsevier, vol. 60(C).
    17. Xie, Li & Zhou, Zhichao & Hui, Shimin, 2022. "Does environmental regulation improve the structure of power generation technology? Evidence from China's pilot policy on the carbon emissions trading market(CETM)," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jianda & Dong, Xiucheng & Dong, Kangyin, 2022. "How does ICT agglomeration affect carbon emissions? The case of Yangtze River Delta urban agglomeration in China," Energy Economics, Elsevier, vol. 111(C).
    2. Peng, Hui & Lu, Yaobin & Wang, Qunwei, 2023. "How does heterogeneous industrial agglomeration affect the total factor energy efficiency of China's digital economy," Energy, Elsevier, vol. 268(C).
    3. Wang, Xuliang & Xu, Lulu & Ye, Qin & He, Shi & Liu, Yi, 2022. "How does services agglomeration affect the energy efficiency of the service sector? Evidence from China," Energy Economics, Elsevier, vol. 112(C).
    4. Dong, Kangyin & Dong, Xiucheng & Jiang, Qingzhe & Zhao, Jun, 2021. "Assessing energy resilience and its greenhouse effect: A global perspective," Energy Economics, Elsevier, vol. 104(C).
    5. Fuzhong Chen & Guohai Jiang & Kangyin Dong, 2022. "How do FDI inflows curvilinearly affect carbon emissions? Threshold effects of energy service availability and cleanliness," Australian Economic Papers, Wiley Blackwell, vol. 61(4), pages 798-824, December.
    6. Rendao Ye & Yue Qi & Wenyan Zhu, 2023. "Impact of Agricultural Industrial Agglomeration on Agricultural Environmental Efficiency in China: A Spatial Econometric Analysis," Sustainability, MDPI, vol. 15(14), pages 1-18, July.
    7. Yunling Ye & Sheng Ye & Haichao Yu, 2021. "Can Industrial Collaborative Agglomeration Reduce Haze Pollution? City-Level Empirical Evidence from China," IJERPH, MDPI, vol. 18(4), pages 1-22, February.
    8. Liu, Yazhou & Ren, Tiantian & Liu, Lijun & Ni, Jinlan & Yin, Yingkai, 2023. "Heterogeneous industrial agglomeration, technological innovation and haze pollution," China Economic Review, Elsevier, vol. 77(C).
    9. Weng, Zhixiong & Liu, Tingting & Wu, Yufeng & Cheng, Cuiyun, 2022. "Air quality improvement effect and future contributions of carbon trading pilot programs in China," Energy Policy, Elsevier, vol. 170(C).
    10. Xuemeng Guo & Ke Guo & Lingpeng Kong, 2023. "Industrial Agglomeration and Corporate ESG Performance: Empirical Evidence from Manufacturing and Producer Services," Sustainability, MDPI, vol. 15(16), pages 1-23, August.
    11. Liu, Xiaoguang & Ji, Qiang & Yu, Jian, 2021. "Sustainable development goals and firm carbon emissions: Evidence from a quasi-natural experiment in China," Energy Economics, Elsevier, vol. 103(C).
    12. Hongze Liang & Xiaoli Hao, 2023. "Can Service Trade Effectively Promote Carbon Emission Reduction?—Evidence from China," Sustainability, MDPI, vol. 15(17), pages 1-23, August.
    13. Tianling Zhang & Panda Su & Hongbing Deng, 2021. "Does the Agglomeration of Producer Services and the Market Entry of Enterprises Promote Carbon Reduction? An Empirical Analysis of the Yangtze River Economic Belt," Sustainability, MDPI, vol. 13(24), pages 1-21, December.
    14. Di, Danyang & Li, Guoxiang & Shen, Zhiyang & Song, Malin & Vardanyan, Michael, 2023. "Environmental credit constraints and pollution reduction: Evidence from China's blacklisting system for environmental fraud," Ecological Economics, Elsevier, vol. 210(C).
    15. Xiaowen Wang & Nishang Tian & Shuting Wang, 2022. "The Impact of Information and Communication Technology Industrial Co-Agglomeration on Carbon Productivity with the Background of the Digital Economy: Empirical Evidence from China," IJERPH, MDPI, vol. 20(1), pages 1-21, December.
    16. Huaxi Yuan & Longhui Zou & Xiangyong Luo & Yidai Feng, 2022. "How Does Manufacturing Agglomeration Affect Green Development? A Spatial and Nonlinear Perspective," IJERPH, MDPI, vol. 19(16), pages 1-23, August.
    17. Kedong Yin & Lu Liu & Haolei Gu, 2022. "Green Paradox or Forced Emission Reduction—The Dual Effects of Environmental Regulation on Carbon Emissions," IJERPH, MDPI, vol. 19(17), pages 1-15, September.
    18. Yan, Bin & Wang, Feng & Dong, Mingru & Ren, Jing & Liu, Juan & Shan, Jing, 2022. "How do financial spatial structure and economic agglomeration affect carbon emission intensity? Theory extension and evidence from China," Economic Modelling, Elsevier, vol. 108(C).
    19. Lei Nie & Purong Chen & Xiuli Liu & Qinqin Shi & Jing Zhang, 2022. "Coupling and Coordinative Development of Green Finance and Industrial-Structure Optimization in China: Spatial-Temporal Difference and Driving Factors," IJERPH, MDPI, vol. 19(17), pages 1-22, September.
    20. Qiao Chen & Yan Mao & Alastair M. Morrison, 2021. "Impacts of Environmental Regulations on Tourism Carbon Emissions," IJERPH, MDPI, vol. 18(23), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:8308-:d:1151106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.