IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i4p1880-d496481.html
   My bibliography  Save this article

A Comeback of Wind Power in Shipping: An Economic and Operational Review on the Wind-Assisted Ship Propulsion Technology

Author

Listed:
  • Todd Chou

    (Hapag-Lloyd Center for Shipping and Global Logistics (CSGL), Kühne Logistics University, Großer Grasbrook 17, 20457 Hamburg, Germany)

  • Vasileios Kosmas

    (Hapag-Lloyd Center for Shipping and Global Logistics (CSGL), Kühne Logistics University, Großer Grasbrook 17, 20457 Hamburg, Germany)

  • Michele Acciaro

    (Hapag-Lloyd Center for Shipping and Global Logistics (CSGL), Kühne Logistics University, Großer Grasbrook 17, 20457 Hamburg, Germany)

  • Katharina Renken

    (Hapag-Lloyd Center for Shipping and Global Logistics (CSGL), Kühne Logistics University, Großer Grasbrook 17, 20457 Hamburg, Germany)

Abstract

Wind-assisted ship propulsion (WASP) technology seems to be a promising solution toward accelerating the shipping industry’s decarbonization efforts as it uses wind to replace part of the propulsive power generated from fossil fuels. This article discusses the status quo of the WASP technological growth within the maritime transport sector by means of a secondary data review analysis, presents the potential fuel-saving implications, and identifies key factors that shape the operational efficiency of the technology. The analysis reveals three key considerations. Firstly, despite the existing limited number of WASP installations, there is a promising trend of diffusion of the technology within the industry. Secondly, companies can achieve fuel savings, which vary depending on the technology installed. Thirdly, these bunker savings are influenced by environmental, on-board, and commercial factors, which presents both opportunities and challenges to decision makers.

Suggested Citation

  • Todd Chou & Vasileios Kosmas & Michele Acciaro & Katharina Renken, 2021. "A Comeback of Wind Power in Shipping: An Economic and Operational Review on the Wind-Assisted Ship Propulsion Technology," Sustainability, MDPI, vol. 13(4), pages 1-16, February.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:1880-:d:496481
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/4/1880/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/4/1880/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Traut, Michael & Gilbert, Paul & Walsh, Conor & Bows, Alice & Filippone, Antonio & Stansby, Peter & Wood, Ruth, 2014. "Propulsive power contribution of a kite and a Flettner rotor on selected shipping routes," Applied Energy, Elsevier, vol. 113(C), pages 362-372.
    2. Leloup, R. & Roncin, K. & Behrel, M. & Bles, G. & Leroux, J.-B. & Jochum, C. & Parlier, Y., 2016. "A continuous and analytical modeling for kites as auxiliary propulsion devoted to merchant ships, including fuel saving estimation," Renewable Energy, Elsevier, vol. 86(C), pages 483-496.
    3. Brown, Marilyn A., 2001. "Market failures and barriers as a basis for clean energy policies," Energy Policy, Elsevier, vol. 29(14), pages 1197-1207, November.
    4. Treanor, Stephen D. & Rogers, Daniel A. & Carter, David A. & Simkins, Betty J., 2014. "Exposure, hedging, and value: New evidence from the U.S. airline industry," International Review of Financial Analysis, Elsevier, vol. 34(C), pages 200-211.
    5. Stephen D. Treanor & Betty J. Simkins & Daniel A. Rogers & David A. Carter, 2014. "Does Operational and Financial Hedging Reduce Exposure? Evidence from the U.S. Airline Industry," The Financial Review, Eastern Finance Association, vol. 49(1), pages 149-172, February.
    6. Rojon, Isabelle & Dieperink, Carel, 2014. "Blowin' in the wind? Drivers and barriers for the uptake of wind propulsion in international shipping," Energy Policy, Elsevier, vol. 67(C), pages 394-402.
    7. Willis, D.J. & Niezrecki, C. & Kuchma, D. & Hines, E. & Arwade, S.R. & Barthelmie, R.J. & DiPaola, M. & Drane, P.J. & Hansen, C.J. & Inalpolat, M. & Mack, J.H. & Myers, A.T. & Rotea, M., 2018. "Wind energy research: State-of-the-art and future research directions," Renewable Energy, Elsevier, vol. 125(C), pages 133-154.
    8. D Ronen, 2011. "The effect of oil price on containership speed and fleet size," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 211-216, January.
    9. Jacobsson, Staffan & Lauber, Volkmar, 2006. "The politics and policy of energy system transformation--explaining the German diffusion of renewable energy technology," Energy Policy, Elsevier, vol. 34(3), pages 256-276, February.
    10. Geels, Frank W., 2002. "Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study," Research Policy, Elsevier, vol. 31(8-9), pages 1257-1274, December.
    11. Esteban, M. Dolores & Diez, J. Javier & López, Jose S. & Negro, Vicente, 2011. "Why offshore wind energy?," Renewable Energy, Elsevier, vol. 36(2), pages 444-450.
    12. Snyder, Brian & Kaiser, Mark J., 2009. "Ecological and economic cost-benefit analysis of offshore wind energy," Renewable Energy, Elsevier, vol. 34(6), pages 1567-1578.
    13. Notteboom, Theo E. & Vernimmen, Bert, 2009. "The effect of high fuel costs on liner service configuration in container shipping," Journal of Transport Geography, Elsevier, vol. 17(5), pages 325-337.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Monica Grosso & Fabio Luis Marques dos Santos & Konstantinos Gkoumas & Marcin Stępniak & Ferenc Pekár, 2021. "The Role of Research and Innovation in Europe for the Decarbonisation of Waterborne Transport," Sustainability, MDPI, vol. 13(18), pages 1-21, September.
    2. Ignė Stalmokaitė & Tommy Larsson Segerlind & Johanna Yliskylä‐Peuralahti, 2023. "Revival of wind‐powered shipping: Comparing the early‐stage innovation process of an incumbent and a newcomer firm," Business Strategy and the Environment, Wiley Blackwell, vol. 32(2), pages 958-975, February.
    3. Tino Vidović & Jakov Šimunović & Gojmir Radica & Željko Penga, 2023. "Systematic Overview of Newly Available Technologies in the Green Maritime Sector," Energies, MDPI, vol. 16(2), pages 1-26, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Orestis Schinas & Niklas Bergmann, 2021. "The Short-Term Cost of Greening the Global Fleet," Sustainability, MDPI, vol. 13(16), pages 1-32, August.
    2. Ignė Stalmokaitė & Tommy Larsson Segerlind & Johanna Yliskylä‐Peuralahti, 2023. "Revival of wind‐powered shipping: Comparing the early‐stage innovation process of an incumbent and a newcomer firm," Business Strategy and the Environment, Wiley Blackwell, vol. 32(2), pages 958-975, February.
    3. Wang, Shuaian & Meng, Qiang, 2012. "Liner ship route schedule design with sea contingency time and port time uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 615-633.
    4. Magirou, Evangelos F. & Psaraftis, Harilaos N. & Bouritas, Theodore, 2015. "The economic speed of an oceangoing vessel in a dynamic setting," Transportation Research Part B: Methodological, Elsevier, vol. 76(C), pages 48-67.
    5. Amirinia, Gholamreza & Mafi, Somayeh & Mazaheri, Said, 2017. "Offshore wind resource assessment of Persian Gulf using uncertainty analysis and GIS," Renewable Energy, Elsevier, vol. 113(C), pages 915-929.
    6. Shuaian Wang & Dan Zhuge & Lu Zhen & Chung-Yee Lee, 2021. "Liner Shipping Service Planning Under Sulfur Emission Regulations," Transportation Science, INFORMS, vol. 55(2), pages 491-509, March.
    7. Engel, Nora, 2009. "Innovation Dynamics in Tuberculosis Control in India: The Shift to New Partnerships," MERIT Working Papers 2009-040, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    8. Child, Michael & Breyer, Christian, 2017. "Transition and transformation: A review of the concept of change in the progress towards future sustainable energy systems," Energy Policy, Elsevier, vol. 107(C), pages 11-26.
    9. Kriechbaum, Michael & Posch, Alfred & Hauswiesner, Angelika, 2021. "Hype cycles during socio-technical transitions: The dynamics of collective expectations about renewable energy in Germany," Research Policy, Elsevier, vol. 50(9).
    10. Wang, Shuaian & Qu, Xiaobo & Yang, Ying, 2015. "Estimation of the perceived value of transit time for containerized cargoes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 298-308.
    11. Sun, Xiaojing & Huang, Diangui & Wu, Guoqing, 2012. "The current state of offshore wind energy technology development," Energy, Elsevier, vol. 41(1), pages 298-312.
    12. Jacobsson, Staffan, 2008. "The emergence and troubled growth of a 'biopower' innovation system in Sweden," Energy Policy, Elsevier, vol. 36(4), pages 1491-1508, April.
    13. Edmondson, Duncan L. & Kern, Florian & Rogge, Karoline S., 2019. "The co-evolution of policy mixes and socio-technical systems: Towards a conceptual framework of policy mix feedback in sustainability transitions," Research Policy, Elsevier, vol. 48(10).
    14. Stefan Ćetković & Aron Buzogány & Miranda Schreurs, 2016. "Varieties of clean energy transitions in Europe: Political-economic foundations of onshore and offshore wind development," WIDER Working Paper Series wp-2016-18, World Institute for Development Economic Research (UNU-WIDER).
    15. Strupeit, Lars, 2017. "An innovation system perspective on the drivers of soft cost reduction for photovoltaic deployment: The case of Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 273-286.
    16. Köhrsen, Jens, 2018. "Exogenous shocks, social skill, and power: Urban energy transitions as social fields," Energy Policy, Elsevier, vol. 117(C), pages 307-315.
    17. Sheng, Dian & Li, Zhi-Chun & Fu, Xiaowen & Gillen, David, 2017. "Modeling the effects of unilateral and uniform emission regulations under shipping company and port competition," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 101(C), pages 99-114.
    18. Nathalie Lazaric & Kevin Maréchal, 2010. "Overcoming inertia: insights from evolutionary economics into improved energy and climate policy," Post-Print hal-00452205, HAL.
    19. Ying Gong & Zhengbao Yang & Xiaobiao Shan & Yubiao Sun & Tao Xie & Yunlong Zi, 2019. "Capturing Flow Energy from Ocean and Wind," Energies, MDPI, vol. 12(11), pages 1-22, June.
    20. Hammar, Linus & Wikström, Andreas & Molander, Sverker, 2014. "Assessing ecological risks of offshore wind power on Kattegat cod," Renewable Energy, Elsevier, vol. 66(C), pages 414-424.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:1880-:d:496481. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.