IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i18p10447-d639106.html
   My bibliography  Save this article

The Role of Research and Innovation in Europe for the Decarbonisation of Waterborne Transport

Author

Listed:
  • Monica Grosso

    (Joint Research Centre (JRC), European Commission, 21027 Ispra, Italy)

  • Fabio Luis Marques dos Santos

    (Joint Research Centre (JRC), European Commission, 21027 Ispra, Italy)

  • Konstantinos Gkoumas

    (Joint Research Centre (JRC), European Commission, 21027 Ispra, Italy)

  • Marcin Stępniak

    (Joint Research Centre (JRC), European Commission, 21027 Ispra, Italy)

  • Ferenc Pekár

    (Joint Research Centre (JRC), European Commission, 21027 Ispra, Italy)

Abstract

Waterborne transport contributes to around 14% of the overall greenhouse gas emissions of transport in the European Union and it is among the most efficient modes of transport. Nonetheless, considering the aim of making the European Union carbon-neutral by 2050 and the fundamental role of waterborne transport within the European economy, effort is needed to reduce its environmental impact. This paper provides an assessment of research and innovation measures aiming at decreasing waterborne transport’s CO 2 emissions by assessing European projects based on the European Commission’s Transport Research and Innovation Monitoring and Information System (TRIMIS). Additionally, it provides an outlook of the evolution of scientific publications and intellectual property activity in the area. The review of project findings suggests that there is no single measure which can be considered as a problem solver in the area of the reduction of waterborne CO 2 emissions, and only the combination of different innovations should enable reaching this goal. The highlighted potential innovations include further development of lightweight composite materials, innovative hull repair methods, wind assisted propulsion, engine efficiency, waste heat electrification, hydrogen and alternative fuels. The assessment shows prevalence of funding allocated to technological measures; however, non-technological ones, like improved vessel navigation and allocation systems, also show a great potential for the reduction of CO 2 emissions and reduction of negative environmental impacts of waterborne transport.

Suggested Citation

  • Monica Grosso & Fabio Luis Marques dos Santos & Konstantinos Gkoumas & Marcin Stępniak & Ferenc Pekár, 2021. "The Role of Research and Innovation in Europe for the Decarbonisation of Waterborne Transport," Sustainability, MDPI, vol. 13(18), pages 1-21, September.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:18:p:10447-:d:639106
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/18/10447/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/18/10447/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ronald A. Halim & Lucie Kirstein & Olaf Merk & Luis M. Martinez, 2018. "Decarbonization Pathways for International Maritime Transport: A Model-Based Policy Impact Assessment," Sustainability, MDPI, vol. 10(7), pages 1-30, June.
    2. Anastasios Tsakalidis & Konstantinos Gkoumas & Monica Grosso & Ferenc Pekár, 2020. "TRIMIS: Modular Development of an Integrated Policy-Support Tool for Forward-Oriented Transport Research and Innovation Analysis," Sustainability, MDPI, vol. 12(23), pages 1-21, December.
    3. Sotiria Lagouvardou & Harilaos N. Psaraftis & Thalis Zis, 2020. "A Literature Survey on Market-Based Measures for the Decarbonization of Shipping," Sustainability, MDPI, vol. 12(10), pages 1-23, May.
    4. Christer Wik & Seppo Niemi, 2016. "Low emission engine technologies for future tier 3 legislations - options and case studies," Journal of Shipping and Trade, Springer, vol. 1(1), pages 1-22, December.
    5. George Panagakos & Thiago de Sousa Pessôa & Nick Dessypris & Michael Bruhn Barfod & Harilaos N. Psaraftis, 2019. "Monitoring the Carbon Footprint of Dry Bulk Shipping in the EU: An Early Assessment of the MRV Regulation," Sustainability, MDPI, vol. 11(18), pages 1-19, September.
    6. de Castro, Carlos & Carpintero, Óscar & Frechoso, Fernando & Mediavilla, Margarita & de Miguel, Luis J., 2014. "A top-down approach to assess physical and ecological limits of biofuels," Energy, Elsevier, vol. 64(C), pages 506-512.
    7. Todd Chou & Vasileios Kosmas & Michele Acciaro & Katharina Renken, 2021. "A Comeback of Wind Power in Shipping: An Economic and Operational Review on the Wind-Assisted Ship Propulsion Technology," Sustainability, MDPI, vol. 13(4), pages 1-16, February.
    8. Anastasios Tsakalidis & Mitchell van Balen & Konstantinos Gkoumas & Ferenc Pekar, 2020. "Catalyzing Sustainable Transport Innovation through Policy Support and Monitoring: The Case of TRIMIS and the European Green Deal," Sustainability, MDPI, vol. 12(8), pages 1-18, April.
    9. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    10. Harilaos N. Psaraftis, 2019. "Speed Optimization vs Speed Reduction: the Choice between Speed Limits and a Bunker Levy," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    11. Chiaramonti, David & Talluri, Giacomo & Scarlat, Nicolae & Prussi, Matteo, 2021. "The challenge of forecasting the role of biofuel in EU transport decarbonisation at 2050: A meta-analysis review of published scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    12. Elizabeth Lindstad & Gunnar S. Eskeland & Agathe Rialland & Anders Valland, 2020. "Decarbonizing Maritime Transport: The Importance of Engine Technology and Regulations for LNG to Serve as a Transition Fuel," Sustainability, MDPI, vol. 12(21), pages 1-21, October.
    13. Patrizia Serra & Gianfranco Fancello, 2020. "Towards the IMO’s GHG Goals: A Critical Overview of the Perspectives and Challenges of the Main Options for Decarbonizing International Shipping," Sustainability, MDPI, vol. 12(8), pages 1-32, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Heri Bezić & Davor Mance & Davorin Balaž, 2022. "Panel Evidence from EU Countries on CO 2 Emission Indicators during the Fourth Industrial Revolution," Sustainability, MDPI, vol. 14(19), pages 1-25, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vinicius Andrade dos Santos & Patrícia Pereira da Silva & Luís Manuel Ventura Serrano, 2022. "The Maritime Sector and Its Problematic Decarbonization: A Systematic Review of the Contribution of Alternative Fuels," Energies, MDPI, vol. 15(10), pages 1-30, May.
    2. Orestis Schinas & Niklas Bergmann, 2021. "The Short-Term Cost of Greening the Global Fleet," Sustainability, MDPI, vol. 13(16), pages 1-32, August.
    3. Bilgili, Levent, 2023. "A systematic review on the acceptance of alternative marine fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    4. Gkoumas, Konstantinos & van Balen, Mitchell & Tsakalidis, Anastasios & Pekar, Ferenc, 2022. "Evaluating the development of transport technologies in European research and innovation projects between 2007 and 2020," Research in Transportation Economics, Elsevier, vol. 92(C).
    5. Nestor Goicoechea & Luis María Abadie, 2021. "Optimal Slow Steaming Speed for Container Ships under the EU Emission Trading System," Energies, MDPI, vol. 14(22), pages 1-25, November.
    6. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    7. Suneet Singh & Ashish Dwivedi & Saurabh Pratap, 2023. "Sustainable Maritime Freight Transportation: Current Status and Future Directions," Sustainability, MDPI, vol. 15(8), pages 1-23, April.
    8. Harilaos N. Psaraftis & Thalis Zis, 2021. "Impact assessment of a mandatory operational goal-based short-term measure to reduce GHG emissions from ships: the LDC/SIDS case study," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 21(3), pages 445-467, September.
    9. Gianandrea Mannarini & Mario Leonardo Salinas & Lorenzo Carelli & Alessandro Fassò, 2022. "How COVID-19 Affected GHG Emissions of Ferries in Europe," Sustainability, MDPI, vol. 14(9), pages 1-19, April.
    10. Harilaos N. Psaraftis & Christos A. Kontovas, 2020. "Decarbonization of Maritime Transport: Is There Light at the End of the Tunnel?," Sustainability, MDPI, vol. 13(1), pages 1-16, December.
    11. Olympia Nisiforou & Louisa Marie Shakou & Afroditi Magou & Alexandros G. Charalambides, 2022. "A Roadmap towards the Decarbonization of Shipping: A Participatory Approach in Cyprus," Sustainability, MDPI, vol. 14(4), pages 1-27, February.
    12. Tino Vidović & Jakov Šimunović & Gojmir Radica & Željko Penga, 2023. "Systematic Overview of Newly Available Technologies in the Green Maritime Sector," Energies, MDPI, vol. 16(2), pages 1-26, January.
    13. Ulla Tapaninen & Riina Palu, 2022. "Recovery of ro-pax ferry traffic from covid-19 under tightening environmental regulations: case Helsinki-Tallinn," Journal of Shipping and Trade, Springer, vol. 7(1), pages 1-17, December.
    14. Sandro Vidas & Marijan Cukrov & Valentina Šutalo & Smiljko Rudan, 2021. "CO 2 Emissions Reduction Measures for RO-RO Vessels on Non-Profitable Coastal Liner Passenger Transport," Sustainability, MDPI, vol. 13(12), pages 1-15, June.
    15. Alejandro Ortega & Konstantinos Gkoumas & Anastasios Tsakalidis & Ferenc Pekár, 2021. "Low-Emission Alternative Energy for Transport in the EU: State of Play of Research and Innovation," Energies, MDPI, vol. 14(22), pages 1-22, November.
    16. Mohamad Issa & Adrian Ilinca & Fahed Martini, 2022. "Ship Energy Efficiency and Maritime Sector Initiatives to Reduce Carbon Emissions," Energies, MDPI, vol. 15(21), pages 1-37, October.
    17. Ángeles Longarela-Ares & Anxo Calvo-Silvosa & José-Benito Pérez-López, 2020. "The Influence of Economic Barriers and Drivers on Energy Efficiency Investments in Maritime Shipping, from the Perspective of the Principal-Agent Problem," Sustainability, MDPI, vol. 12(19), pages 1-42, September.
    18. Zeke Marshall & Paul E. Brockway, 2020. "A Net Energy Analysis of the Global Agriculture, Aquaculture, Fishing and Forestry System," Biophysical Economics and Resource Quality, Springer, vol. 5(2), pages 1-27, June.
    19. Henry Schwartz & Tomi Solakivi & Magnus Gustafsson, 2022. "Is There Business Potential for Sustainable Shipping? Price Premiums Needed to Cover Decarbonized Transportation," Sustainability, MDPI, vol. 14(10), pages 1-20, May.
    20. Nieto, Jaime & Carpintero, Óscar & Miguel, Luis J. & de Blas, Ignacio, 2020. "Macroeconomic modelling under energy constraints: Global low carbon transition scenarios," Energy Policy, Elsevier, vol. 137(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:18:p:10447-:d:639106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.