IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p7910-d952531.html
   My bibliography  Save this article

Ship Energy Efficiency and Maritime Sector Initiatives to Reduce Carbon Emissions

Author

Listed:
  • Mohamad Issa

    (Institut Maritime du Québec à Rimouski, Rimouski, QC G5L 4B4, Canada
    Département de Mathématiques, Informatique et de Génie, Université du Québec à Rimouski, Rimouski, QC G5L 3A1, Canada)

  • Adrian Ilinca

    (Département de Mathématiques, Informatique et de Génie, Université du Québec à Rimouski, Rimouski, QC G5L 3A1, Canada)

  • Fahed Martini

    (Département de Mathématiques, Informatique et de Génie, Université du Québec à Rimouski, Rimouski, QC G5L 3A1, Canada)

Abstract

With stricter IMO regulations on CO 2 taking effect in 2023 and ambitious goals to reduce carbon intensity by 2030, the maritime industry is scrambling to clean up its act. Conventional methods and equipment are now being reevaluated, upgraded or completely replaced. The difference between a short-term fix and a long-term sustainable option is how flexible vessels will be to use new energy sources or technology as they become viable. The review discusses the recent literature on renewable energy sources, technical and operational strategies for new and existing ships, technology maturity, and alternative fuels. It is found that the IMO’s targets can be met by combining two or three technologies, or via a radical technology shift which can provide innovative, high-efficiency solutions from an environmental and economic standpoint. It has also been noted that policies and enforcement are essential management instruments for mitigating the unfavourable environmental effects of marine transportation and directing the maritime industry toward sustainability on a regional, national, and international scale.

Suggested Citation

  • Mohamad Issa & Adrian Ilinca & Fahed Martini, 2022. "Ship Energy Efficiency and Maritime Sector Initiatives to Reduce Carbon Emissions," Energies, MDPI, vol. 15(21), pages 1-37, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:7910-:d:952531
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/7910/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/7910/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuan, Yupeng & Wang, Jixiang & Yan, Xinping & Li, Qing & Long, Teng, 2018. "A design and experimental investigation of a large-scale solar energy/diesel generator powered hybrid ship," Energy, Elsevier, vol. 165(PA), pages 965-978.
    2. Muhammad Umair Mutarraf & Yacine Terriche & Kamran Ali Khan Niazi & Juan C. Vasquez & Josep M. Guerrero, 2018. "Energy Storage Systems for Shipboard Microgrids—A Review," Energies, MDPI, vol. 11(12), pages 1-32, December.
    3. Harilaos N. Psaraftis, 2016. "Green Maritime Transportation: Market Based Measures," International Series in Operations Research & Management Science, in: Harilaos N. Psaraftis (ed.), Green Transportation Logistics, edition 127, chapter 0, pages 267-297, Springer.
    4. Elizabeth Lindstad & Agathe Rialland, 2020. "LNG and Cruise Ships, an Easy Way to Fulfil Regulations—Versus the Need for Reducing GHG Emissions," Sustainability, MDPI, vol. 12(5), pages 1-15, March.
    5. Sotiria Lagouvardou & Harilaos N. Psaraftis & Thalis Zis, 2020. "A Literature Survey on Market-Based Measures for the Decarbonization of Shipping," Sustainability, MDPI, vol. 12(10), pages 1-23, May.
    6. Thomson, Heather & Corbett, James J. & Winebrake, James J., 2015. "Natural gas as a marine fuel," Energy Policy, Elsevier, vol. 87(C), pages 153-167.
    7. Hountalas, D.T. & Mavropoulos, G.C. & Binder, K.B., 2008. "Effect of exhaust gas recirculation (EGR) temperature for various EGR rates on heavy duty DI diesel engine performance and emissions," Energy, Elsevier, vol. 33(2), pages 272-283.
    8. Christa Hainz & Johann Wackerbauer & Tanja Stitteneder, 2021. "Economic Policy Goals of the Sustainable Finance Approach: Challenges for SMEs," CESifo Forum, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 22(03), pages 30-33, May.
    9. Ziaul Haque Munim & Mariia Dushenko & Veronica Jaramillo Jimenez & Mohammad Hassan Shakil & Marius Imset, 2020. "Big data and artificial intelligence in the maritime industry: a bibliometric review and future research directions," Maritime Policy & Management, Taylor & Francis Journals, vol. 47(5), pages 577-597, July.
    10. Lee, Chung-Yee & Lee, Hau L. & Zhang, Jiheng, 2015. "The impact of slow ocean steaming on delivery reliability and fuel consumption," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 76(C), pages 176-190.
    11. Balsamo, Flavio & Capasso, Clemente & Lauria, Davide & Veneri, Ottorino, 2020. "Optimal design and energy management of hybrid storage systems for marine propulsion applications," Applied Energy, Elsevier, vol. 278(C).
    12. Hui Xing & Charles Stuart & Stephen Spence & Hua Chen, 2021. "Fuel Cell Power Systems for Maritime Applications: Progress and Perspectives," Sustainability, MDPI, vol. 13(3), pages 1-34, January.
    13. Baldi, Francesco & Gabrielii, Cecilia, 2015. "A feasibility analysis of waste heat recovery systems for marine applications," Energy, Elsevier, vol. 80(C), pages 654-665.
    14. Michael Maloni & Jomon Aliyas Paul & David M Gligor, 2013. "Slow steaming impacts on ocean carriers and shippers," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 15(2), pages 151-171, June.
    15. Wenming Shi & Yi Xiao & Zhuo Chen & Heather McLaughlin & Kevin X. Li, 2018. "Evolution of green shipping research: themes and methods," Maritime Policy & Management, Taylor & Francis Journals, vol. 45(7), pages 863-876, October.
    16. Lin, Bin & Lin, Cherng-Yuan, 2006. "Compliance with international emission regulations: Reducing the air pollution from merchant vessels," Marine Policy, Elsevier, vol. 30(3), pages 220-225, May.
    17. Elizabeth Lindstad & Gunnar S. Eskeland & Agathe Rialland & Anders Valland, 2020. "Decarbonizing Maritime Transport: The Importance of Engine Technology and Regulations for LNG to Serve as a Transition Fuel," Sustainability, MDPI, vol. 12(21), pages 1-21, October.
    18. Yao Ahoutou & Adrian Ilinca & Mohamad Issa, 2022. "Electrochemical Cells and Storage Technologies to Increase Renewable Energy Share in Cold Climate Conditions—A Critical Assessment," Energies, MDPI, vol. 15(4), pages 1-30, February.
    19. Brewer, Thomas L., 2019. "Black carbon emissions and regulatory policies in transportation," Energy Policy, Elsevier, vol. 129(C), pages 1047-1055.
    20. Tanaka, Hidemi & Okada, Akira, 2019. "Effects of market-based measures on a shipping company: Using an optimal control approach for long-term modeling," Research in Transportation Economics, Elsevier, vol. 73(C), pages 63-71.
    21. Zhu, Sipeng & Zhang, Kun & Deng, Kangyao, 2020. "A review of waste heat recovery from the marine engine with highly efficient bottoming power cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Milad Ghorbanzadeh & Mohamad Issa & Adrian Ilinca, 2023. "Experimental Underperformance Detection of a Fixed-Speed Diesel–Electric Generator Based on Exhaust Gas Emissions," Energies, MDPI, vol. 16(8), pages 1-15, April.
    2. Chungen Yin & Christian Kjaer Rosenvinge & Marcus Pless Sandland & Anders Ehlers & Keun Woo Shin, 2023. "Improve Ship Propeller Efficiency via Optimum Design of Propeller Boss Cap Fins," Energies, MDPI, vol. 16(3), pages 1-17, January.
    3. Mohamad Issa & Adrian Ilinca & Daniel R. Rousse & Loïc Boulon & Philippe Groleau, 2023. "Renewable Energy and Decarbonization in the Canadian Mining Industry: Opportunities and Challenges," Energies, MDPI, vol. 16(19), pages 1-22, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vinicius Andrade dos Santos & Patrícia Pereira da Silva & Luís Manuel Ventura Serrano, 2022. "The Maritime Sector and Its Problematic Decarbonization: A Systematic Review of the Contribution of Alternative Fuels," Energies, MDPI, vol. 15(10), pages 1-30, May.
    2. Trivyza, Nikoletta L. & Rentizelas, Athanasios & Theotokatos, Gerasimos & Boulougouris, Evangelos, 2022. "Decision support methods for sustainable ship energy systems: A state-of-the-art review," Energy, Elsevier, vol. 239(PC).
    3. Hoang, Anh Tuan & Pandey, Ashok & Martinez De Osés, Francisco Javier & Chen, Wei-Hsin & Said, Zafar & Ng, Kim Hoong & Ağbulut, Ümit & Tarełko, Wiesław & Ölçer, Aykut I. & Nguyen, Xuan Phuong, 2023. "Technological solutions for boosting hydrogen role in decarbonization strategies and net-zero goals of world shipping: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    4. Balcombe, Paul & Staffell, Iain & Kerdan, Ivan Garcia & Speirs, Jamie F. & Brandon, Nigel P. & Hawkes, Adam D., 2021. "How can LNG-fuelled ships meet decarbonisation targets? An environmental and economic analysis," Energy, Elsevier, vol. 227(C).
    5. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. Aydin, N. & Lee, H. & Mansouri, S.A., 2017. "Speed optimization and bunkering in liner shipping in the presence of uncertain service times and time windows at ports," European Journal of Operational Research, Elsevier, vol. 259(1), pages 143-154.
    7. Yifan Wang & Laurence A. Wright, 2021. "A Comparative Review of Alternative Fuels for the Maritime Sector: Economic, Technology, and Policy Challenges for Clean Energy Implementation," World, MDPI, vol. 2(4), pages 1-26, October.
    8. Wang, Tingsong & Cheng, Peiyue & Zhen, Lu, 2023. "Green development of the maritime industry: Overview, perspectives, and future research opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    9. Sotiria Lagouvardou & Harilaos N. Psaraftis & Thalis Zis, 2020. "A Literature Survey on Market-Based Measures for the Decarbonization of Shipping," Sustainability, MDPI, vol. 12(10), pages 1-23, May.
    10. Zeeshan Raza & Johan Woxenius & Christian Finnsgård, 2019. "Slow Steaming as Part of SECA Compliance Strategies among RoRo and RoPax Shipping Companies," Sustainability, MDPI, vol. 11(5), pages 1-19, March.
    11. Saleh Aseel & Hussein Al-Yafei & Murat Kucukvar & Nuri C. Onat, 2021. "Life Cycle Air Emissions and Social Human Health Impact Assessment of Liquified Natural Gas Maritime Transport," Energies, MDPI, vol. 14(19), pages 1-19, September.
    12. Dongping Song, 2021. "A Literature Review, Container Shipping Supply Chain: Planning Problems and Research Opportunities," Logistics, MDPI, vol. 5(2), pages 1-26, June.
    13. Mallidis, Ioannis & Iakovou, Eleftherios & Dekker, Rommert & Vlachos, Dimitrios, 2018. "The impact of slow steaming on the carriers’ and shippers’ costs: The case of a global logistics network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 18-39.
    14. Inal, Omer Berkehan & Charpentier, Jean-Frédéric & Deniz, Cengiz, 2022. "Hybrid power and propulsion systems for ships: Current status and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    15. Zhu, Sipeng & Zhang, Kun & Deng, Kangyao, 2020. "A review of waste heat recovery from the marine engine with highly efficient bottoming power cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    16. Sandro Vidas & Marijan Cukrov & Valentina Šutalo & Smiljko Rudan, 2021. "CO 2 Emissions Reduction Measures for RO-RO Vessels on Non-Profitable Coastal Liner Passenger Transport," Sustainability, MDPI, vol. 13(12), pages 1-15, June.
    17. Riccardo Giusti & Daniele Manerba & Roberto Tadei, 2021. "Smart Steaming: A New Flexible Paradigm for Synchromodal Logistics," Sustainability, MDPI, vol. 13(9), pages 1-21, April.
    18. Jason Monios, 2023. "The Moral Limits of Market-Based Mechanisms: An Application to the International Maritime Sector," Journal of Business Ethics, Springer, vol. 187(2), pages 283-299, October.
    19. Halff, Antoine & Younes, Lara & Boersma, Tim, 2019. "The likely implications of the new IMO standards on the shipping industry," Energy Policy, Elsevier, vol. 126(C), pages 277-286.
    20. Monica Grosso & Fabio Luis Marques dos Santos & Konstantinos Gkoumas & Marcin Stępniak & Ferenc Pekár, 2021. "The Role of Research and Innovation in Europe for the Decarbonisation of Waterborne Transport," Sustainability, MDPI, vol. 13(18), pages 1-21, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:7910-:d:952531. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.