IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v126y2019icp277-286.html
   My bibliography  Save this article

The likely implications of the new IMO standards on the shipping industry

Author

Listed:
  • Halff, Antoine
  • Younes, Lara
  • Boersma, Tim

Abstract

Discussions about “peak oil demand” tend to focus on passenger vehicles, often from a US and European perspective. These discussions often ignore other markets, such as marine transport, which collectively would also need to show a reduction in demand if oil consumption were to reach an inflection point. We explore the outlook for marine bunkers, a niche market that accounts, depending on estimates, for up to 7% of the demand barrel. We focus on the possible impact of new environmental restrictions that aim to drastically reduce sulfur oxide (SOx) emissions from ships as of January 2020, placing them against the background of past innovations that have been reshaping ships’ fuel consumption patterns and assessing their likely impact on future innovation in the sector. We conclude that the rules might paradoxically end up slowing down what might have otherwise been a more rapid transition of the shipping market away from traditional bunker fuels. The rules will, however, adversely affect simple refineries and producers of heavy, sour crude oil grades, whose prices are sometimes indexed to that of high sulfur fuel oil (HSFO).

Suggested Citation

  • Halff, Antoine & Younes, Lara & Boersma, Tim, 2019. "The likely implications of the new IMO standards on the shipping industry," Energy Policy, Elsevier, vol. 126(C), pages 277-286.
  • Handle: RePEc:eee:enepol:v:126:y:2019:i:c:p:277-286
    DOI: 10.1016/j.enpol.2018.11.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421518307626
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2018.11.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thomson, Heather & Corbett, James J. & Winebrake, James J., 2015. "Natural gas as a marine fuel," Energy Policy, Elsevier, vol. 87(C), pages 153-167.
    2. Burel, Fabio & Taccani, Rodolfo & Zuliani, Nicola, 2013. "Improving sustainability of maritime transport through utilization of Liquefied Natural Gas (LNG) for propulsion," Energy, Elsevier, vol. 57(C), pages 412-420.
    3. Michael Maloni & Jomon Aliyas Paul & David M Gligor, 2013. "Slow steaming impacts on ocean carriers and shippers," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 15(2), pages 151-171, June.
    4. Lasserre, Frédéric & Pelletier, Sébastien, 2011. "Polar super seaways? Maritime transport in the Arctic: an analysis of shipowners’ intentions," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1465-1473.
    5. Lan, Hai & Wen, Shuli & Hong, Ying-Yi & Yu, David C. & Zhang, Lijun, 2015. "Optimal sizing of hybrid PV/diesel/battery in ship power system," Applied Energy, Elsevier, vol. 158(C), pages 26-34.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Čech, František & Zítek, Michal, 2022. "Marine fuel hedging under the sulfur cap regulations," Energy Economics, Elsevier, vol. 113(C).
    2. Maxim A. Dulebenets & Junayed Pasha & Olumide F. Abioye & Masoud Kavoosi, 2021. "Vessel scheduling in liner shipping: a critical literature review and future research needs," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 43-106, March.
    3. Sou, Weng Sut & Goh, Tian & Lee, Xin Ni & Ng, Szu Hui & Chai, Kah-Hin, 2022. "Reducing the carbon intensity of international shipping – The impact of energy efficiency measures," Energy Policy, Elsevier, vol. 170(C).
    4. Andreas Papandreou & Phoebe Koundouri & Lydia Papadaki, 2020. "Sustainable Shipping: Levers of Change," DEOS Working Papers 2025, Athens University of Economics and Business.
    5. John C. Beghin & Heidi Schweizer, 2021. "Agricultural Trade Costs," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 43(2), pages 500-530, June.
    6. Nepomuceno de Oliveira, Maurício Aguilar & Szklo, Alexandre & Castelo Branco, David Alves, 2022. "Implementation of Maritime Transport Mitigation Measures according to their marginal abatement costs and their mitigation potentials," Energy Policy, Elsevier, vol. 160(C).
    7. Sdoukopoulos, Eleftherios & Boile, Maria, 2020. "Port-hinterland concept evolution: A critical review," Journal of Transport Geography, Elsevier, vol. 86(C).
    8. Zeeshan Raza & Johan Woxenius & Christian Finnsgård, 2019. "Slow Steaming as Part of SECA Compliance Strategies among RoRo and RoPax Shipping Companies," Sustainability, MDPI, vol. 11(5), pages 1-19, March.
    9. Li, Lingyue & Gao, Suixiang & Yang, Wenguo & Xiong, Xing, 2020. "Ship’s response strategy to emission control areas: From the perspective of sailing pattern optimization and evasion strategy selection," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    10. Jin, Chao & Sun, Tianyun & Ampah, Jeffrey Dankwa & Liu, Xin & Geng, Zhenlong & Afrane, Sandylove & Yusuf, Abdulfatah Abdu & Liu, Haifeng, 2022. "Comparative study on synthetic and biological surfactants’ role in phase behavior and fuel properties of marine heavy fuel oil-low carbon alcohol blends under different temperatures," Renewable Energy, Elsevier, vol. 195(C), pages 841-852.
    11. Hsien H. Khoo, 2022. "LCA of Mixed Generation Systems in Singapore: Implications for National Policy Making," Energies, MDPI, vol. 15(24), pages 1-14, December.
    12. Glyptis, Loukas & Hadjielias, Elias & Christofi, Michael & Kvasova, Olga & Vrontis, Demetris, 2021. "Dynamic familiness capabilities and family business growth: A longitudinal perspective framed within management accounting," Journal of Business Research, Elsevier, vol. 127(C), pages 346-363.
    13. Orestis Schinas & Niklas Bergmann, 2021. "The Short-Term Cost of Greening the Global Fleet," Sustainability, MDPI, vol. 13(16), pages 1-32, August.
    14. Fabio D’Agostino & Daniele Kaza & Michele Martelli & Giacomo-Piero Schiapparelli & Federico Silvestro & Carlo Soldano, 2020. "Development of a Multiphysics Real-Time Simulator for Model-Based Design of a DC Shipboard Microgrid," Energies, MDPI, vol. 13(14), pages 1-18, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Tingsong & Cheng, Peiyue & Zhen, Lu, 2023. "Green development of the maritime industry: Overview, perspectives, and future research opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    2. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Kian-Guan Lim & Michelle Lim, 2020. "Financial performance of shipping firms that increase LNG carriers and the support of eco-innovation," Journal of Shipping and Trade, Springer, vol. 5(1), pages 1-25, December.
    4. Duan, Zhongdi & Zhu, Yifeng & Wang, Chenbiao & Yuan, Yuchao & Xue, Hongxiang & Tang, Wenyong, 2023. "Numerical and theoretical prediction of the thermodynamic response in marine LNG fuel tanks under sloshing conditions," Energy, Elsevier, vol. 270(C).
    5. Kirsi Spoof-Tuomi & Seppo Niemi, 2020. "Environmental and Economic Evaluation of Fuel Choices for Short Sea Shipping," Clean Technol., MDPI, vol. 2(1), pages 1-19, January.
    6. Zheng, Wei & Li, Bo & Song, Dongping, 2022. "The optimal green strategies for competitive ocean carriers under potential regulation," European Journal of Operational Research, Elsevier, vol. 303(2), pages 840-856.
    7. Konstantinos Kouzelis & Koos Frouws & Edwin Hassel, 2022. "Maritime fuels of the future: what is the impact of alternative fuels on the optimal economic speed of large container vessels," Journal of Shipping and Trade, Springer, vol. 7(1), pages 1-29, December.
    8. Trivyza, Nikoletta L. & Rentizelas, Athanasios & Theotokatos, Gerasimos & Boulougouris, Evangelos, 2022. "Decision support methods for sustainable ship energy systems: A state-of-the-art review," Energy, Elsevier, vol. 239(PC).
    9. Kalikatzarakis, Miltiadis & Theotokatos, Gerasimos & Coraddu, Andrea & Sayan, Paul & Wong, Seng Yew, 2022. "Model based analysis of the boil-off gas management and control for LNG fuelled vessels," Energy, Elsevier, vol. 251(C).
    10. Hoang, Anh Tuan & Pandey, Ashok & Martinez De Osés, Francisco Javier & Chen, Wei-Hsin & Said, Zafar & Ng, Kim Hoong & Ağbulut, Ümit & Tarełko, Wiesław & Ölçer, Aykut I. & Nguyen, Xuan Phuong, 2023. "Technological solutions for boosting hydrogen role in decarbonization strategies and net-zero goals of world shipping: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    11. James J. Winebrake & James J. Corbett & Fatima Umar & Daniel Yuska, 2019. "Pollution Tradeoffs for Conventional and Natural Gas-Based Marine Fuels," Sustainability, MDPI, vol. 11(8), pages 1-19, April.
    12. Inal, Omer Berkehan & Charpentier, Jean-Frédéric & Deniz, Cengiz, 2022. "Hybrid power and propulsion systems for ships: Current status and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    13. Mohamad Issa & Adrian Ilinca & Fahed Martini, 2022. "Ship Energy Efficiency and Maritime Sector Initiatives to Reduce Carbon Emissions," Energies, MDPI, vol. 15(21), pages 1-37, October.
    14. Bilgili, Levent, 2023. "A systematic review on the acceptance of alternative marine fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    15. Nuchturee, Chalermkiat & Li, Tie & Xia, Hongpu, 2020. "Energy efficiency of integrated electric propulsion for ships – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    16. Balcombe, Paul & Staffell, Iain & Kerdan, Ivan Garcia & Speirs, Jamie F. & Brandon, Nigel P. & Hawkes, Adam D., 2021. "How can LNG-fuelled ships meet decarbonisation targets? An environmental and economic analysis," Energy, Elsevier, vol. 227(C).
    17. Luo, Xiaobo & Wang, Meihong, 2017. "Study of solvent-based carbon capture for cargo ships through process modelling and simulation," Applied Energy, Elsevier, vol. 195(C), pages 402-413.
    18. Jang, Hayoung & Jeong, Byongug & Zhou, Peilin & Ha, Seungman & Nam, Dong, 2021. "Demystifying the lifecycle environmental benefits and harms of LNG as marine fuel," Applied Energy, Elsevier, vol. 292(C).
    19. Park, Hyunjun & Lee, Sanghuk & Jeong, Jinyeong & Chang, Daejun, 2018. "Design of the compressor-assisted LNG fuel gas supply system," Energy, Elsevier, vol. 158(C), pages 1017-1027.
    20. Tran, Nguyen Khoi & Haasis, Hans-Dietrich, 2015. "An empirical study of fleet expansion and growth of ship size in container liner shipping," International Journal of Production Economics, Elsevier, vol. 159(C), pages 241-253.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:126:y:2019:i:c:p:277-286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.