IDEAS home Printed from https://ideas.repec.org/p/aue/wpaper/2025.html
   My bibliography  Save this paper

Sustainable Shipping: Levers of Change

Author

Listed:
  • Andreas Papandreou
  • Phoebe Koundouri
  • Lydia Papadaki

Abstract

Sustainable shipping refers to the broad set of challenges, nature of governance rules and regulations, patterns of management and corporate behaviors and aims, engagement of stakeholders, and forms of industrial activity that should come to define a marine transport industry that is shaped by the broader societal goals of sustainable development. This chapter aims to provide a brief overview of the marine transport industry, its role and relevance in sustainable development and the kinds of changes that are needed for shipping to be sustainable. The focus is mostly on the environmental dimension of sustainable development. As a sector, and for reasons that have to do with the special nature of its international governance that partly falls outside the confines of national jurisdictions, shipping may have been a late comer to some of the most pressing sustainability challenges of our time. After presenting some recent economic trends of the sector and their potential implications for sustainability the chapter will present some environmental pressures that are related to shipping and will focus on two particular sustainability challenges confronted by maritime transport: the need to drastically reduce sulfur emissions and the even more demanding challenge to mitigate CO2 emissions. Before concluding, the penultimate section will briefly present some sustainability initiatives already under way.

Suggested Citation

  • Andreas Papandreou & Phoebe Koundouri & Lydia Papadaki, 2020. "Sustainable Shipping: Levers of Change," DEOS Working Papers 2025, Athens University of Economics and Business.
  • Handle: RePEc:aue:wpaper:2025
    as

    Download full text from publisher

    File URL: http://wpa.deos.aueb.gr/docs/Sustainable.shipping.pdf
    File Function: First version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael Traut & Alice Larkin & Kevin Anderson & Christophe McGlade & Maria Sharmina & Tristan Smith, 2018. "CO2 abatement goals for international shipping," Climate Policy, Taylor & Francis Journals, vol. 18(8), pages 1066-1075, September.
    2. Michael Maloni & Jomon Aliyas Paul & David M Gligor, 2013. "Slow steaming impacts on ocean carriers and shippers," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 15(2), pages 151-171, June.
    3. Halff, Antoine & Younes, Lara & Boersma, Tim, 2019. "The likely implications of the new IMO standards on the shipping industry," Energy Policy, Elsevier, vol. 126(C), pages 277-286.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olympia Nisiforou & Louisa Marie Shakou & Afroditi Magou & Alexandros G. Charalambides, 2022. "A Roadmap towards the Decarbonization of Shipping: A Participatory Approach in Cyprus," Sustainability, MDPI, vol. 14(4), pages 1-27, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeeshan Raza & Johan Woxenius & Christian Finnsgård, 2019. "Slow Steaming as Part of SECA Compliance Strategies among RoRo and RoPax Shipping Companies," Sustainability, MDPI, vol. 11(5), pages 1-19, March.
    2. Müller-Casseres, Eduardo & Edelenbosch, Oreane Y. & Szklo, Alexandre & Schaeffer, Roberto & van Vuuren, Detlef P., 2021. "Global futures of trade impacting the challenge to decarbonize the international shipping sector," Energy, Elsevier, vol. 237(C).
    3. Tran, Nguyen Khoi & Haasis, Hans-Dietrich, 2015. "An empirical study of fleet expansion and growth of ship size in container liner shipping," International Journal of Production Economics, Elsevier, vol. 159(C), pages 241-253.
    4. Thalis P. V. Zis & Harilaos N. Psaraftis, 2022. "Impacts of short-term measures to decarbonize maritime transport on perishable cargoes," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 24(3), pages 602-629, September.
    5. Hsien H. Khoo, 2022. "LCA of Mixed Generation Systems in Singapore: Implications for National Policy Making," Energies, MDPI, vol. 15(24), pages 1-14, December.
    6. Mäkitie, Tuukka & Steen, Markus & Saether, Erik Andreas & Bjørgum, Øyvind & Poulsen, René T., 2022. "Norwegian ship-owners' adoption of alternative fuels," Energy Policy, Elsevier, vol. 163(C).
    7. Fan, Yingjie & Schwartz, Frank & Voß, Stefan, 2017. "Flexible supply chain planning based on variable transportation modes," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 654-666.
    8. Alexandros M. Goulielmos, 2018. "“After End-2008 Structural Changes in Containership Market” and Their Impact on Industry’s Policy," IJFS, MDPI, vol. 6(4), pages 1-21, November.
    9. Peter Andersson & Pernilla Ivehammar, 2017. "Dynamic route planning in the Baltic Sea Region – A cost-benefit analysis based on AIS data," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(4), pages 631-649, December.
    10. Mohamad Issa & Adrian Ilinca & Fahed Martini, 2022. "Ship Energy Efficiency and Maritime Sector Initiatives to Reduce Carbon Emissions," Energies, MDPI, vol. 15(21), pages 1-37, October.
    11. Alexander M. Goulielmos, 2017. "“Containership Markets”: A Comparison with Bulk Shipping and a Proposed Oligopoly Model," SPOUDAI Journal of Economics and Business, SPOUDAI Journal of Economics and Business, University of Piraeus, vol. 67(2), pages 47-68, April-Jun.
    12. Orestis Schinas & Niklas Bergmann, 2021. "The Short-Term Cost of Greening the Global Fleet," Sustainability, MDPI, vol. 13(16), pages 1-32, August.
    13. Yewen Gu & Stein W. Wallace & Xin Wang, 2017. "The Impact of Bunker Risk Management on CO2 Emissions in Maritime Transportation Under ECA Regulation," Springer Optimization and Its Applications, in: Didem Cinar & Konstantinos Gakis & Panos M. Pardalos (ed.), Sustainable Logistics and Transportation, pages 199-224, Springer.
    14. Petri Helo & Henri Paukku & Tero Sairanen, 2021. "Containership cargo profiles, cargo systems, and stowage capacity: key performance indicators," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(1), pages 28-48, March.
    15. Aydin, N. & Lee, H. & Mansouri, S.A., 2017. "Speed optimization and bunkering in liner shipping in the presence of uncertain service times and time windows at ports," European Journal of Operational Research, Elsevier, vol. 259(1), pages 143-154.
    16. Maxim A. Dulebenets & Junayed Pasha & Olumide F. Abioye & Masoud Kavoosi, 2021. "Vessel scheduling in liner shipping: a critical literature review and future research needs," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 43-106, March.
    17. Tyworth, John E., 2018. "A note on lead-time paradoxes and a tale of competing prescriptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 139-150.
    18. Riccardo Giusti & Daniele Manerba & Roberto Tadei, 2021. "Smart Steaming: A New Flexible Paradigm for Synchromodal Logistics," Sustainability, MDPI, vol. 13(9), pages 1-21, April.
    19. Čech, František & Zítek, Michal, 2022. "Marine fuel hedging under the sulfur cap regulations," Energy Economics, Elsevier, vol. 113(C).
    20. Julia Hansson & Selma Brynolf & Erik Fridell & Mariliis Lehtveer, 2020. "The Potential Role of Ammonia as Marine Fuel—Based on Energy Systems Modeling and Multi-Criteria Decision Analysis," Sustainability, MDPI, vol. 12(8), pages 1-20, April.

    More about this item

    Keywords

    Sustainable shipping; maritime transport; CO2 emissions mitigation; EU ETS;
    All these keywords.

    JEL classification:

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aue:wpaper:2025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ekaterini Glynou (email available below). General contact details of provider: https://edirc.repec.org/data/diauegr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.