IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i8p3265-d346692.html
   My bibliography  Save this article

The Potential Role of Ammonia as Marine Fuel—Based on Energy Systems Modeling and Multi-Criteria Decision Analysis

Author

Listed:
  • Julia Hansson

    (Department of Mechanics and Maritime Sciences, Maritime Environmental Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
    Sustainable Society, IVL Swedish Environmental Research Institute, Box 530 21, SE-400 14 Gothenburg, Sweden)

  • Selma Brynolf

    (Department of Mechanics and Maritime Sciences, Maritime Environmental Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden)

  • Erik Fridell

    (Sustainable Society, IVL Swedish Environmental Research Institute, Box 530 21, SE-400 14 Gothenburg, Sweden)

  • Mariliis Lehtveer

    (Department of Space, Earth and Environment, Energy Technology, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden)

Abstract

To reduce the climate impact of shipping, the introduction of alternative fuels is required. There is a range of different marine fuel options but ammonia, a potential zero carbon fuel, has recently received a lot of attention. The purpose of this paper is to assess the prospects for ammonia as a future fuel for the shipping sector in relation to other marine fuels. The assessment is based on a synthesis of knowledge in combination with: (i) energy systems modeling including the cost-effectiveness of ammonia as marine fuel in relation to other fuels for reaching global climate targets; and (ii) a multi-criteria decision analysis (MCDA) approach ranking marine fuel options while considering estimated fuel performance and the importance of criteria based on maritime stakeholder preferences. In the long-term and to reach global GHG reduction, the energy systems modeled indicate that the use of hydrogen represents a more cost-effective marine fuel option than ammonia. However, in the MCDA covering more aspects, we find that ammonia may be almost as interesting for shipping related stakeholders as hydrogen and various biomass-based fuels. Ammonia may to some extent be an interesting future marine fuel option, but many issues remain to be solved before large-scale introduction.

Suggested Citation

  • Julia Hansson & Selma Brynolf & Erik Fridell & Mariliis Lehtveer, 2020. "The Potential Role of Ammonia as Marine Fuel—Based on Energy Systems Modeling and Multi-Criteria Decision Analysis," Sustainability, MDPI, vol. 12(8), pages 1-20, April.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:8:p:3265-:d:346692
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/8/3265/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/8/3265/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ronald A. Halim & Lucie Kirstein & Olaf Merk & Luis M. Martinez, 2018. "Decarbonization Pathways for International Maritime Transport: A Model-Based Policy Impact Assessment," Sustainability, MDPI, vol. 10(7), pages 1-30, June.
    2. Michael Traut & Alice Larkin & Kevin Anderson & Christophe McGlade & Maria Sharmina & Tristan Smith, 2018. "CO2 abatement goals for international shipping," Climate Policy, Taylor & Francis Journals, vol. 18(8), pages 1066-1075, September.
    3. Itf, 2018. "Decarbonising Maritime Transport: Pathways to zero-carbon shipping by 2035," International Transport Forum Policy Papers 47, OECD Publishing.
    4. ben Brahim, Till & Wiese, Frauke & Münster, Marie, 2019. "Pathways to climate-neutral shipping: A Danish case study," Energy, Elsevier, vol. 188(C).
    5. Schnitkey, Gary, 2017. "Fertilizer Costs in 2017 and 2018," farmdoc daily, University of Illinois at Urbana-Champaign, Department of Agricultural and Consumer Economics, vol. 7, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michail Cheliotis & Evangelos Boulougouris & Nikoletta L Trivyza & Gerasimos Theotokatos & George Livanos & George Mantalos & Athanasios Stubos & Emmanuel Stamatakis & Alexandros Venetsanos, 2021. "Review on the Safe Use of Ammonia Fuel Cells in the Maritime Industry," Energies, MDPI, vol. 14(11), pages 1-20, May.
    2. Bilgili, Levent, 2023. "A systematic review on the acceptance of alternative marine fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    3. Iva Ridjan Skov & Noémi Schneider & Gerald Schweiger & Josef-Peter Schöggl & Alfred Posch, 2021. "Power-to-X in Denmark: An Analysis of Strengths, Weaknesses, Opportunities and Threats," Energies, MDPI, vol. 14(4), pages 1-14, February.
    4. Thomas Buckley Imhoff & Savvas Gkantonas & Epaminondas Mastorakos, 2021. "Analysing the Performance of Ammonia Powertrains in the Marine Environment," Energies, MDPI, vol. 14(21), pages 1-41, November.
    5. Vinicius Andrade dos Santos & Patrícia Pereira da Silva & Luís Manuel Ventura Serrano, 2022. "The Maritime Sector and Its Problematic Decarbonization: A Systematic Review of the Contribution of Alternative Fuels," Energies, MDPI, vol. 15(10), pages 1-30, May.
    6. Magdalena Klopott & Marzenna Popek & Ilona Urbanyi-Popiołek, 2023. "Seaports’ Role in Ensuring the Availability of Alternative Marine Fuels—A Multi-Faceted Analysis," Energies, MDPI, vol. 16(7), pages 1-30, March.
    7. Perčić, Maja & Vladimir, Nikola & Jovanović, Ivana & Koričan, Marija, 2022. "Application of fuel cells with zero-carbon fuels in short-sea shipping," Applied Energy, Elsevier, vol. 309(C).
    8. Eleni Strantzali & Georgios A. Livanos & Konstantinos Aravossis, 2023. "A Comprehensive Multicriteria Evaluation Approach for Alternative Marine Fuels," Energies, MDPI, vol. 16(22), pages 1-21, November.
    9. Srivastava, Vivek & Schaub, Joschka & Pischinger, Stefan, 2023. "Model-based closed-loop control strategies for flex-fuel capability," Applied Energy, Elsevier, vol. 350(C).
    10. Chiong, Meng-Choung & Kang, Hooi-Siang & Shaharuddin, Nik Mohd Ridzuan & Mat, Shabudin & Quen, Lee Kee & Ten, Ki-Hong & Ong, Muk Chen, 2021. "Challenges and opportunities of marine propulsion with alternative fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    11. Chai, Wai Siong & Bao, Yulei & Jin, Pengfei & Tang, Guang & Zhou, Lei, 2021. "A review on ammonia, ammonia-hydrogen and ammonia-methane fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    12. Alam Md Moshiul & Roslina Mohammad & Fariha Anjum Hira, 2023. "Alternative Fuel Selection Framework toward Decarbonizing Maritime Deep-Sea Shipping," Sustainability, MDPI, vol. 15(6), pages 1-37, March.
    13. Youngkyun Seo & Jiyoung An & Eunyoung Park & Jintae Kim & Meangik Cho & Seongjong Han & Jinkwang Lee, 2024. "Technical–Economic Analysis for Ammonia Ocean Transportation Using an Ammonia-Fueled Carrier," Sustainability, MDPI, vol. 16(2), pages 1-16, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Vinicius Andrade dos Santos & Patrícia Pereira da Silva & Luís Manuel Ventura Serrano, 2022. "The Maritime Sector and Its Problematic Decarbonization: A Systematic Review of the Contribution of Alternative Fuels," Energies, MDPI, vol. 15(10), pages 1-30, May.
    3. Olympia Nisiforou & Louisa Marie Shakou & Afroditi Magou & Alexandros G. Charalambides, 2022. "A Roadmap towards the Decarbonization of Shipping: A Participatory Approach in Cyprus," Sustainability, MDPI, vol. 14(4), pages 1-27, February.
    4. Bilgili, Levent, 2023. "A systematic review on the acceptance of alternative marine fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    5. Karin Andersson & Selma Brynolf & Julia Hansson & Maria Grahn, 2020. "Criteria and Decision Support for A Sustainable Choice of Alternative Marine Fuels," Sustainability, MDPI, vol. 12(9), pages 1-23, April.
    6. Guangchao Sun & Nishikant Wase & Shengqiang Shu & Jerry Jenkins & Bangjun Zhou & J. Vladimir Torres-Rodríguez & Cindy Chen & Laura Sandor & Chris Plott & Yuko Yoshinga & Christopher Daum & Peng Qi & K, 2022. "Genome of Paspalum vaginatum and the role of trehalose mediated autophagy in increasing maize biomass," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    7. Nestor Goicoechea & Luis María Abadie, 2021. "Optimal Slow Steaming Speed for Container Ships under the EU Emission Trading System," Energies, MDPI, vol. 14(22), pages 1-25, November.
    8. Lixian Fan & Bingmei Gu, 2019. "Impacts of the Increasingly Strict Sulfur Limit on Compliance Option Choices: The Case Study of Chinese SECA," Sustainability, MDPI, vol. 12(1), pages 1-20, December.
    9. Orestis Schinas & Niklas Bergmann, 2021. "The Short-Term Cost of Greening the Global Fleet," Sustainability, MDPI, vol. 13(16), pages 1-32, August.
    10. Iva Ridjan Skov & Noémi Schneider & Gerald Schweiger & Josef-Peter Schöggl & Alfred Posch, 2021. "Power-to-X in Denmark: An Analysis of Strengths, Weaknesses, Opportunities and Threats," Energies, MDPI, vol. 14(4), pages 1-14, February.
    11. Suneet Singh & Ashish Dwivedi & Saurabh Pratap, 2023. "Sustainable Maritime Freight Transportation: Current Status and Future Directions," Sustainability, MDPI, vol. 15(8), pages 1-23, April.
    12. Michalis P. Michaelides & Herodotos Herodotou & Mikael Lind & Richard T. Watson, 2019. "Port-2-Port Communication Enhancing Short Sea Shipping Performance: The Case Study of Cyprus and the Eastern Mediterranean," Sustainability, MDPI, vol. 11(7), pages 1-22, March.
    13. Harilaos N. Psaraftis & Thalis Zis, 2021. "Impact assessment of a mandatory operational goal-based short-term measure to reduce GHG emissions from ships: the LDC/SIDS case study," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 21(3), pages 445-467, September.
    14. Tang, Ruoli & An, Qing & Xu, Fan & Zhang, Xiaodi & Li, Xin & Lai, Jingang & Dong, Zhengcheng, 2020. "Optimal operation of hybrid energy system for intelligent ship: An ultrahigh-dimensional model and control method," Energy, Elsevier, vol. 211(C).
    15. Michail Cheliotis & Evangelos Boulougouris & Nikoletta L Trivyza & Gerasimos Theotokatos & George Livanos & George Mantalos & Athanasios Stubos & Emmanuel Stamatakis & Alexandros Venetsanos, 2021. "Review on the Safe Use of Ammonia Fuel Cells in the Maritime Industry," Energies, MDPI, vol. 14(11), pages 1-20, May.
    16. Giuliano Rolle, 2022. "Between and within vehicle models hedonic analyses of environmental attributes: the case of the Italian used-car market," SEEDS Working Papers 0822, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Aug 2022.
    17. Concettina Marino & Antonino Nucara & Maria Francesca Panzera & Matilde Pietrafesa, 2023. "Effects of the SARS-CoV-2 Pandemic on CO 2 Emissions in the Port Areas of the Strait of Messina," Sustainability, MDPI, vol. 15(12), pages 1-30, June.
    18. Minghan Sun & Yiwei Jia & Jian Wei & Jewel X. Zhu, 2023. "Exploring the Green-Oriented Transition Process of Ship Power Systems: A Patent-Based Overview on Innovation Trends and Patterns," Energies, MDPI, vol. 16(6), pages 1-18, March.
    19. Panagiotis Fragkos, 2022. "Decarbonizing the International Shipping and Aviation Sectors," Energies, MDPI, vol. 15(24), pages 1-25, December.
    20. Mäkitie, Tuukka & Steen, Markus & Saether, Erik Andreas & Bjørgum, Øyvind & Poulsen, René T., 2022. "Norwegian ship-owners' adoption of alternative fuels," Energy Policy, Elsevier, vol. 163(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:8:p:3265-:d:346692. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.