IDEAS home Printed from https://ideas.repec.org/a/taf/tcpoxx/v18y2018i8p1066-1075.html
   My bibliography  Save this article

CO2 abatement goals for international shipping

Author

Listed:
  • Michael Traut
  • Alice Larkin
  • Kevin Anderson
  • Christophe McGlade
  • Maria Sharmina
  • Tristan Smith

Abstract

The Paris Agreement, which entered into force in 2016, sets the ambitious climate change mitigation goal of limiting the global temperature increase to below 2°C and ideally 1.5°C. This puts a severe constraint on the remaining global GHG emissions budget. While international shipping is also a contributor to anthropogenic GHG emissions, and CO2 in particular, it is not included in the Paris Agreement. This article discusses how a share of a global CO2 budget over the twenty-first century could be apportioned to international shipping, and, using a range of future trade scenarios, explores the requisite cuts to the CO2 intensity of shipping. The results demonstrate that, under a wide range of assumptions, existing short-term levers of efficiency must be urgently exploited to achieve mitigation commensurate with that required from the rest of the economy, with virtually full decarbonization of international shipping required as early as before mid-century.Key policy insightsRegulatory action is key to ensuring the international shipping sector’s long-term sustainability. For the shipping industry to deliver mitigation in line with the Paris Agreement, virtually full decarbonization needs to be achieved. In the near term, immediate and rapid exploitation of available mitigation measures is of critical importance. Any delay in the transition will increase the risk of stranded assets, or diminish the chances of meeting the Paris Agreement's temperature commitments.

Suggested Citation

  • Michael Traut & Alice Larkin & Kevin Anderson & Christophe McGlade & Maria Sharmina & Tristan Smith, 2018. "CO2 abatement goals for international shipping," Climate Policy, Taylor & Francis Journals, vol. 18(8), pages 1066-1075, September.
  • Handle: RePEc:taf:tcpoxx:v:18:y:2018:i:8:p:1066-1075
    DOI: 10.1080/14693062.2018.1461059
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14693062.2018.1461059
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14693062.2018.1461059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mäkitie, Tuukka & Steen, Markus & Saether, Erik Andreas & Bjørgum, Øyvind & Poulsen, René T., 2022. "Norwegian ship-owners' adoption of alternative fuels," Energy Policy, Elsevier, vol. 163(C).
    2. Andreas Papandreou & Phoebe Koundouri & Lydia Papadaki, 2020. "Sustainable Shipping: Levers of Change," DEOS Working Papers 2025, Athens University of Economics and Business.
    3. Panagiotis Fragkos, 2022. "Decarbonizing the International Shipping and Aviation Sectors," Energies, MDPI, vol. 15(24), pages 1-25, December.
    4. Zhao, Zhongzhong & Liu, Wenhuan & Jiang, Yiwen & Li, Hui, 2023. "Enhancement mechanisms of spherical UFA on CO2 capture of waste slag," Energy, Elsevier, vol. 269(C).
    5. Perčić, Maja & Ančić, Ivica & Vladimir, Nikola, 2020. "Life-cycle cost assessments of different power system configurations to reduce the carbon footprint in the Croatian short-sea shipping sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    6. Simonsen, Morten & Gössling, Stefan & Walnum, Hans Jakob, 2019. "Cruise ship emissions in Norwegian waters: A geographical analysis," Journal of Transport Geography, Elsevier, vol. 78(C), pages 87-97.
    7. Müller-Casseres, Eduardo & Edelenbosch, Oreane Y. & Szklo, Alexandre & Schaeffer, Roberto & van Vuuren, Detlef P., 2021. "Global futures of trade impacting the challenge to decarbonize the international shipping sector," Energy, Elsevier, vol. 237(C).
    8. Julia Hansson & Selma Brynolf & Erik Fridell & Mariliis Lehtveer, 2020. "The Potential Role of Ammonia as Marine Fuel—Based on Energy Systems Modeling and Multi-Criteria Decision Analysis," Sustainability, MDPI, vol. 12(8), pages 1-20, April.
    9. Styliani Livaniou & Georgios Chatzistelios & Dimitrios V. Lyridis & Evangelos Bellos, 2022. "LNG vs. MDO in Marine Fuel Emissions Tracking," Sustainability, MDPI, vol. 14(7), pages 1-12, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tcpoxx:v:18:y:2018:i:8:p:1066-1075. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/tcpo20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.