IDEAS home Printed from https://ideas.repec.org/a/pal/marecl/v27y2025i1d10.1057_s41278-024-00288-y.html
   My bibliography  Save this article

Assessing the decarbonization roadmap of a RoPax ferry

Author

Listed:
  • Bening Mayanti

    (University of Vaasa)

  • Magnus Hellström

    (Åbo Akademi University)

  • Anthony Katumwesigye

    (Åbo Akademi University)

Abstract

The reduction of emissions from shipping is necessary to combat climate change. One viable option is to change the fuels utilized. In this study, we investigate the environmental and economic performance of marine diesel oil (MDO), liquified natural gas (LNG), liquified biogas (LBG), and a mixture of LNG and LBG. We study a real case of a roll-on/roll-off passenger ship (RoPax) in Finland. Life cycle thinking is applied to assess the environmental impact, covering emissions from well to propeller (raw material extraction, fuel production, transportation, storage, and combustion), while the economic implications are estimated through future fuel prices and carbon pricing from 2023 to 2050. The carbon pricing covers different carbon tax schemes, namely stated policies scenario (STEPS), sustainable development scenarios (SDS), and net-zero emissions (NZE). STEPS reflects the existing measures and policies under development; SDS pursues to meet the goal of Paris Agreement, while NZE aims to reach net zero. Adopting LNG would improve carbon dioxide emissions, but the overall climate change impact was not significantly lower than MDO. It is also found that the biggest environmental improvement can be obtained by switching to LBG, although future availability can be an issue. The economic assessment shows that LBG has the highest fuel price uncertainties, although its carbon cost will be the lowest. Alternatively, using LNG & LBG mixture can serve as a transition path to contain climate change while dealing with its price uncertainty and availability.

Suggested Citation

  • Bening Mayanti & Magnus Hellström & Anthony Katumwesigye, 2025. "Assessing the decarbonization roadmap of a RoPax ferry," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 27(1), pages 123-146, March.
  • Handle: RePEc:pal:marecl:v:27:y:2025:i:1:d:10.1057_s41278-024-00288-y
    DOI: 10.1057/s41278-024-00288-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41278-024-00288-y
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41278-024-00288-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fan, Ailong & Wang, Junteng & He, Yapeng & Perčić, Maja & Vladimir, Nikola & Yang, Liu, 2021. "Decarbonising inland ship power system: Alternative solution and assessment method," Energy, Elsevier, vol. 226(C).
    2. Grusche J. Seithe & Alexandra Bonou & Dimitrios Giannopoulos & Chariklia A. Georgopoulou & Maria Founti, 2020. "Maritime Transport in a Life Cycle Perspective: How Fuels, Vessel Types, and Operational Profiles Influence Energy Demand and Greenhouse Gas Emissions," Energies, MDPI, vol. 13(11), pages 1-20, May.
    3. Henry Schwartz & Tomi Solakivi & Magnus Gustafsson, 2022. "Is There Business Potential for Sustainable Shipping? Price Premiums Needed to Cover Decarbonized Transportation," Sustainability, MDPI, vol. 14(10), pages 1-20, May.
    4. Kirsi Spoof-Tuomi & Seppo Niemi, 2020. "Environmental and Economic Evaluation of Fuel Choices for Short Sea Shipping," Clean Technol., MDPI, vol. 2(1), pages 1-19, January.
    5. Dominik Englert & Andrew Losos & Carlo Raucci & Marie Fricaudet & Tristan Smith, 2021. "The Potential of Zero-Carbon Bunker Fuels in Developing Countries," World Bank Publications - Reports 35435, The World Bank Group.
    6. Perčić, Maja & Vladimir, Nikola & Fan, Ailong, 2020. "Life-cycle cost assessment of alternative marine fuels to reduce the carbon footprint in short-sea shipping: A case study of Croatia," Applied Energy, Elsevier, vol. 279(C).
    7. Michael Traut & Alice Larkin & Kevin Anderson & Christophe McGlade & Maria Sharmina & Tristan Smith, 2018. "CO2 abatement goals for international shipping," Climate Policy, Taylor & Francis Journals, vol. 18(8), pages 1066-1075, September.
    8. Anastasia Christodoulou & Kevin Cullinane, 2021. "Potential for, and drivers of, private voluntary initiatives for the decarbonisation of short sea shipping: evidence from a Swedish ferry line," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(4), pages 632-654, December.
    9. ben Brahim, Till & Wiese, Frauke & Münster, Marie, 2019. "Pathways to climate-neutral shipping: A Danish case study," Energy, Elsevier, vol. 188(C).
    10. Brynolf, Selma & Taljegard, Maria & Grahn, Maria & Hansson, Julia, 2018. "Electrofuels for the transport sector: A review of production costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1887-1905.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Perčić, Maja & Frković, Lovro & Pukšec, Tomislav & Ćosić, Boris & Li, Oi Lun & Vladimir, Nikola, 2022. "Life-cycle assessment and life-cycle cost assessment of power batteries for all-electric vessels for short-sea navigation," Energy, Elsevier, vol. 251(C).
    2. Korberg, A.D. & Brynolf, S. & Grahn, M. & Skov, I.R., 2021. "Techno-economic assessment of advanced fuels and propulsion systems in future fossil-free ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    3. Lovro Frković & Boris Ćosić & Tomislav Pukšec & Nikola Vladimir, 2023. "Modelling of the Standalone Onshore Charging Station: The Nexus between Offshore Renewables and All-Electric Ships," Energies, MDPI, vol. 16(15), pages 1-16, August.
    4. Iva Ridjan Skov & Noémi Schneider & Gerald Schweiger & Josef-Peter Schöggl & Alfred Posch, 2021. "Power-to-X in Denmark: An Analysis of Strengths, Weaknesses, Opportunities and Threats," Energies, MDPI, vol. 14(4), pages 1-14, February.
    5. Desantes, J.M. & Novella, R. & Pla, B. & Lopez-Juarez, M., 2021. "Impact of fuel cell range extender powertrain design on greenhouse gases and NOX emissions in automotive applications," Applied Energy, Elsevier, vol. 302(C).
    6. Vinicius Andrade dos Santos & Patrícia Pereira da Silva & Luís Manuel Ventura Serrano, 2022. "The Maritime Sector and Its Problematic Decarbonization: A Systematic Review of the Contribution of Alternative Fuels," Energies, MDPI, vol. 15(10), pages 1-30, May.
    7. Perčić, Maja & Vladimir, Nikola & Fan, Ailong, 2021. "Techno-economic assessment of alternative marine fuels for inland shipping in Croatia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    8. Martin, Jonas & Neumann, Anne & Ødegård, Anders, 2023. "Renewable hydrogen and synthetic fuels versus fossil fuels for trucking, shipping and aviation: A holistic cost model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    9. Alam Md Moshiul & Roslina Mohammad & Fariha Anjum Hira & Nurazean Maarop, 2022. "Alternative Marine Fuel Research Advances and Future Trends: A Bibliometric Knowledge Mapping Approach," Sustainability, MDPI, vol. 14(9), pages 1-27, April.
    10. Guven, Denizhan, 2025. "Assessing the environmental and economic viability of floating PV-powered green hydrogen: A case study on inland ferry operations in Türkiye," Applied Energy, Elsevier, vol. 377(PD).
    11. Julia Hansson & Selma Brynolf & Erik Fridell & Mariliis Lehtveer, 2020. "The Potential Role of Ammonia as Marine Fuel—Based on Energy Systems Modeling and Multi-Criteria Decision Analysis," Sustainability, MDPI, vol. 12(8), pages 1-20, April.
    12. Fan, Ailong & Xiong, Yuqi & Yang, Liu & Zhang, Haiying & He, Yapeng, 2023. "Carbon footprint model and low–carbon pathway of inland shipping based on micro–macro analysis," Energy, Elsevier, vol. 263(PE).
    13. Bilgili, Levent, 2023. "A systematic review on the acceptance of alternative marine fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    14. Gray, Nathan & O'Shea, Richard & Smyth, Beatrice & Lens, Piet N.L. & Murphy, Jerry D., 2024. "An assessment of decarbonisation pathways for intercontinental deep-sea shipping using power-to-X fuels," Applied Energy, Elsevier, vol. 376(PA).
    15. Kanchiralla, Fayas Malik & Brynolf, Selma & Olsson, Tobias & Ellis, Joanne & Hansson, Julia & Grahn, Maria, 2023. "How do variations in ship operation impact the techno-economic feasibility and environmental performance of fossil-free fuels? A life cycle study," Applied Energy, Elsevier, vol. 350(C).
    16. Yan, Xinping & He, Yapeng & Fan, Ailong, 2023. "Carbon footprint prediction considering the evolution of alternative fuels and cargo: A case study of Yangtze river ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    17. Karin Andersson & Selma Brynolf & Julia Hansson & Maria Grahn, 2020. "Criteria and Decision Support for A Sustainable Choice of Alternative Marine Fuels," Sustainability, MDPI, vol. 12(9), pages 1-23, April.
    18. Michael Metzger & Mathias Duckheim & Marco Franken & Hans Joerg Heger & Matthias Huber & Markus Knittel & Till Kolster & Martin Kueppers & Carola Meier & Dieter Most & Simon Paulus & Lothar Wyrwoll & , 2021. "Pathways toward a Decarbonized Future—Impact on Security of Supply and System Stability in a Sustainable German Energy System," Energies, MDPI, vol. 14(3), pages 1-28, January.
    19. Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    20. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:marecl:v:27:y:2025:i:1:d:10.1057_s41278-024-00288-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.