IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i6p2566-d1091665.html
   My bibliography  Save this article

Exploring the Green-Oriented Transition Process of Ship Power Systems: A Patent-Based Overview on Innovation Trends and Patterns

Author

Listed:
  • Minghan Sun

    (School of Intellectual Property, Nanjing University of Science and Technology, Nanjing 210094, China)

  • Yiwei Jia

    (School of Intellectual Property, Nanjing University of Science and Technology, Nanjing 210094, China)

  • Jian Wei

    (China Institute of Marine Technology and Economy, Beijing 100081, China)

  • Jewel X. Zhu

    (School of Information Management, Nanjing University, Nanjing 210023, China)

Abstract

The shipping industry has accelerated the transformation of its carbon emission reduction and decarbonization, and relevant patents are rapidly increasing, but the industry still lacks consensus on the low-carbon development route of ship propulsion technology. We used the Derwent Innovation Index to collect the global patent information on ship power systems between 1965 and 2022 and proposed a new patent information mining framework. It is used for the dynamic tracking and analysis of global technology correlation characteristics, hot technology topics, and competitive situations. The findings indicate that: (1) the innovation of ship power systems is more radical and concentrated in the fuel field represented by LNG technology, whereas technical innovation in the field of pure electric propulsion is more scattered. Small tonnage ships, underwater operations, and recreation technology are among its innovation hotspots. (2) Pure electric propulsion technology is dominated by combined innovation with other propulsion methods (hybrid propulsion technology) and Chinese universities have recently begun to lead this technology. (3) Fuel cells and remote control have become innovation hotspots. Fuel cell technology, which combines electric, fuel, and hybrid power technology, is now on the cutting edge of innovation and has the potential for disruptive innovation.

Suggested Citation

  • Minghan Sun & Yiwei Jia & Jian Wei & Jewel X. Zhu, 2023. "Exploring the Green-Oriented Transition Process of Ship Power Systems: A Patent-Based Overview on Innovation Trends and Patterns," Energies, MDPI, vol. 16(6), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2566-:d:1091665
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/6/2566/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/6/2566/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ronald A. Halim & Lucie Kirstein & Olaf Merk & Luis M. Martinez, 2018. "Decarbonization Pathways for International Maritime Transport: A Model-Based Policy Impact Assessment," Sustainability, MDPI, vol. 10(7), pages 1-30, June.
    2. Constantinos Chlomoudis & Theodore Styliadis, 2022. "Innovation and Patenting within Containerized Liner Shipping," Sustainability, MDPI, vol. 14(2), pages 1-18, January.
    3. Paweł Kołakowski & Mateusz Gil & Krzysztof Wróbel & Yuh-Shan Ho, 2022. "State of play in technology and legal framework of alternative marine fuels and renewable energy systems: a bibliometric analysis," Maritime Policy & Management, Taylor & Francis Journals, vol. 49(2), pages 236-260, February.
    4. Burel, Fabio & Taccani, Rodolfo & Zuliani, Nicola, 2013. "Improving sustainability of maritime transport through utilization of Liquefied Natural Gas (LNG) for propulsion," Energy, Elsevier, vol. 57(C), pages 412-420.
    5. Alam Md Moshiul & Roslina Mohammad & Fariha Anjum Hira & Nurazean Maarop, 2022. "Alternative Marine Fuel Research Advances and Future Trends: A Bibliometric Knowledge Mapping Approach," Sustainability, MDPI, vol. 14(9), pages 1-27, April.
    6. Olympia Nisiforou & Louisa Marie Shakou & Afroditi Magou & Alexandros G. Charalambides, 2022. "A Roadmap towards the Decarbonization of Shipping: A Participatory Approach in Cyprus," Sustainability, MDPI, vol. 14(4), pages 1-27, February.
    7. Tanvir Ahmed Toshon & M. O. Faruque, 2022. "Multiobjective Optimization Based Framework for Early Stage Design of Modular Multilevel Converter for All-Electric Ship Application," Energies, MDPI, vol. 15(12), pages 1-18, June.
    8. Jin, Chao & Sun, Tianyun & Ampah, Jeffrey Dankwa & Liu, Xin & Geng, Zhenlong & Afrane, Sandylove & Yusuf, Abdulfatah Abdu & Liu, Haifeng, 2022. "Comparative study on synthetic and biological surfactants’ role in phase behavior and fuel properties of marine heavy fuel oil-low carbon alcohol blends under different temperatures," Renewable Energy, Elsevier, vol. 195(C), pages 841-852.
    9. Papadis, Elisa & Tsatsaronis, George, 2020. "Challenges in the decarbonization of the energy sector," Energy, Elsevier, vol. 205(C).
    10. Groppi, Daniele & Nastasi, Benedetto & Prina, Matteo Giacomo, 2022. "The EPLANoptMAC model to plan the decarbonisation of the maritime transport sector of a small island," Energy, Elsevier, vol. 254(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olympia Nisiforou & Louisa Marie Shakou & Afroditi Magou & Alexandros G. Charalambides, 2022. "A Roadmap towards the Decarbonization of Shipping: A Participatory Approach in Cyprus," Sustainability, MDPI, vol. 14(4), pages 1-27, February.
    2. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Bilgili, Levent, 2023. "A systematic review on the acceptance of alternative marine fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    4. Arsani Alina & Stefan George, 2024. "Energy Transition and European Sub-Models. Restructuring EU Economy," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 18(1), pages 86-101.
    5. Luo, Xiaobo & Wang, Meihong, 2017. "Study of solvent-based carbon capture for cargo ships through process modelling and simulation," Applied Energy, Elsevier, vol. 195(C), pages 402-413.
    6. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    7. Jang, Hayoung & Jeong, Byongug & Zhou, Peilin & Ha, Seungman & Nam, Dong, 2021. "Demystifying the lifecycle environmental benefits and harms of LNG as marine fuel," Applied Energy, Elsevier, vol. 292(C).
    8. Al-Jabri, Hareb & Das, Probir & Khan, Shoyeb & AbdulQuadir, Mohammad & Thaher, Mehmoud Ibrahim & Hoekman, Kent & Hawari, Alaa H., 2022. "A comparison of bio-crude oil production from five marine microalgae – Using life cycle analysis," Energy, Elsevier, vol. 251(C).
    9. Łukasz Jarosław Kozar & Robert Matusiak & Marta Paduszyńska & Adam Sulich, 2022. "Green Jobs in the EU Renewable Energy Sector: Quantile Regression Approach," Energies, MDPI, vol. 15(18), pages 1-21, September.
    10. Jānis Krūmiņš & Māris Kļaviņš, 2023. "Investigating the Potential of Nuclear Energy in Achieving a Carbon-Free Energy Future," Energies, MDPI, vol. 16(9), pages 1-31, April.
    11. Verdone, Alessio & Scardapane, Simone & Panella, Massimo, 2024. "Explainable Spatio-Temporal Graph Neural Networks for multi-site photovoltaic energy production," Applied Energy, Elsevier, vol. 353(PB).
    12. Zhu, Yu & Li, Jiamei & Ge, Minghui & Gu, Hai & Wang, Shixue, 2023. "Numerical and experimental study of a non-frosting thermoelectric generation device for low temperature waste heat recovery," Applied Energy, Elsevier, vol. 352(C).
    13. Cagli, Efe Caglar, 2023. "The volatility spillover between battery metals and future mobility stocks: Evidence from the time-varying frequency connectedness approach," Resources Policy, Elsevier, vol. 86(PA).
    14. Abdul-Salam, Yakubu & Kemp, Alex & Phimister, Euan, 2022. "Energy transition in the UKCS – Modelling the effects of carbon emission charges on upstream petroleum operations," Energy Economics, Elsevier, vol. 108(C).
    15. Lixian Fan & Bingmei Gu, 2019. "Impacts of the Increasingly Strict Sulfur Limit on Compliance Option Choices: The Case Study of Chinese SECA," Sustainability, MDPI, vol. 12(1), pages 1-20, December.
    16. N. Thangaiyarkarasi & S. Vanitha, 2021. "The Impact of Financial Development on Decarbonization Factors of Carbon Emissions: A Global Perspective," International Journal of Energy Economics and Policy, Econjournals, vol. 11(6), pages 353-364.
    17. Tinta, Abdoulganiour Almame, 2023. "Energy substitution in Africa: Cross-regional differentiation effects," Energy, Elsevier, vol. 263(PA).
    18. Trivyza, Nikoletta L. & Rentizelas, Athanasios & Theotokatos, Gerasimos, 2019. "Impact of carbon pricing on the cruise ship energy systems optimal configuration," Energy, Elsevier, vol. 175(C), pages 952-966.
    19. Orestis Schinas & Niklas Bergmann, 2021. "The Short-Term Cost of Greening the Global Fleet," Sustainability, MDPI, vol. 13(16), pages 1-32, August.
    20. Martina Ricci & Marcello Benvenuto & Stefano Gino Mosele & Roberto Pacciani & Michele Marconcini, 2022. "Predicting the Impact of Compressor Flexibility Improvements on Heavy-Duty Gas Turbines for Minimum and Base Load Conditions," Energies, MDPI, vol. 15(20), pages 1-14, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2566-:d:1091665. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.