IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v55y2021i2p491-509.html
   My bibliography  Save this article

Liner Shipping Service Planning Under Sulfur Emission Regulations

Author

Listed:
  • Shuaian Wang

    (Department of Logistics and Maritime Studies, The Hong Kong Polytechnic University, Hung Hom, Hong Kong;)

  • Dan Zhuge

    (Department of Logistics and Maritime Studies, The Hong Kong Polytechnic University, Hung Hom, Hong Kong;)

  • Lu Zhen

    (School of Management, Shanghai University, Shanghai 200444, China;)

  • Chung-Yee Lee

    (Department of Industrial Engineering and Decision Analytics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong)

Abstract

Air emissions from ships have become an important issue in sustainable shipping because of the low quality of the marine fuel consumed by ships. To reduce sulfur emissions from shipping, the International Maritime Organization has established emission control areas (ECAs) where ships must use low-sulfur fuel with at most 0.1% sulfur or take equivalent emission-reduction measures. The use of low-sulfur fuel increases the costs for liner shipping companies and affects their operations management. This study addresses a holistic liner shipping service planning problem that integrates fleet deployment, schedule design, and sailing path and speed optimization, considering the effect of ECAs. We propose a nesting algorithmic framework to address this new and challenging problem. Semianalytical solutions are derived for the sailing path and speed optimization problem, which are used in the schedule design. A tailored algorithm is applied to solve schedule design problems, and the solutions are used in fleet deployment. The fleet deployment problem is then addressed by a dynamic programming-based pseudo-polynomial time algorithm. Numerical experiments demonstrate that considering the effect of ECAs in liner shipping operations management can reduce over 2% of the costs, which is significant considering that the annual operating cost of a shipping company’s network can be as high as several billion dollars.

Suggested Citation

  • Shuaian Wang & Dan Zhuge & Lu Zhen & Chung-Yee Lee, 2021. "Liner Shipping Service Planning Under Sulfur Emission Regulations," Transportation Science, INFORMS, vol. 55(2), pages 491-509, March.
  • Handle: RePEc:inm:ortrsc:v:55:y:2021:i:2:p:491-509
    DOI: 10.1287/trsc.2020.1010
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/trsc.2020.1010
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.2020.1010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wang, Shuaian & Wang, Xinchang, 2016. "A polynomial-time algorithm for sailing speed optimization with containership resource sharing," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 394-405.
    2. Lee, Chung-Yee & Lee, Hau L. & Zhang, Jiheng, 2015. "The impact of slow ocean steaming on delivery reliability and fuel consumption," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 76(C), pages 176-190.
    3. Ho-Yin Mak & Ying Rong & Zuo-Jun Max Shen, 2013. "Infrastructure Planning for Electric Vehicles with Battery Swapping," Management Science, INFORMS, vol. 59(7), pages 1557-1575, July.
    4. Dimitri J. Papageorgiou & Ahmet B. Keha & George L. Nemhauser & Joel Sokol, 2014. "Two-Stage Decomposition Algorithms for Single Product Maritime Inventory Routing," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 825-847, November.
    5. K Fagerholt & G Laporte & I Norstad, 2010. "Reducing fuel emissions by optimizing speed on shipping routes," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(3), pages 523-529, March.
    6. Christiansen, Marielle & Fagerholt, Kjetil & Nygreen, Bjørn & Ronen, David, 2013. "Ship routing and scheduling in the new millennium," European Journal of Operational Research, Elsevier, vol. 228(3), pages 467-483.
    7. Benjamin Legros & Yann Bouchery & Jan C Fransoo, 2019. "A Time-Based Policy for Empty Container Management by Consignees," Post-Print hal-02019993, HAL.
    8. Wang, Shuaian, 2016. "Fundamental properties and pseudo-polynomial-time algorithm for network containership sailing speed optimization," European Journal of Operational Research, Elsevier, vol. 250(1), pages 46-55.
    9. Heng Chen & Senay Solak, 2015. "Lower Cost Arrivals for Airlines: Optimal Policies for Managing Runway Operations under Optimized Profile Descent," Production and Operations Management, Production and Operations Management Society, vol. 24(3), pages 402-420, March.
    10. Li, Chen & Qi, Xiangtong & Song, Dongping, 2016. "Real-time schedule recovery in liner shipping service with regular uncertainties and disruption events," Transportation Research Part B: Methodological, Elsevier, vol. 93(PB), pages 762-788.
    11. Lee, Chung-Yee & Song, Dong-Ping, 2017. "Ocean container transport in global supply chains: Overview and research opportunities," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 442-474.
    12. D Ronen, 2011. "The effect of oil price on containership speed and fleet size," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 211-216, January.
    13. Qiang Meng & Shuaian Wang & Henrik Andersson & Kristian Thun, 2014. "Containership Routing and Scheduling in Liner Shipping: Overview and Future Research Directions," Transportation Science, INFORMS, vol. 48(2), pages 265-280, May.
    14. Alexandar Angelus & Wanshan Zhu, 2017. "Looking Upstream: Optimal Policies for a Class of Capacitated Multi-Stage Inventory Systems," Production and Operations Management, Production and Operations Management Society, vol. 26(11), pages 2071-2088, November.
    15. Anastassios N. Perakis & Nikiforos A. Papadakis, 1989. "Minimal Time Vessel Routing in a Time-Dependent Environment," Transportation Science, INFORMS, vol. 23(4), pages 266-276, November.
    16. Jean-François Cordeau & Paolo Toth & Daniele Vigo, 1998. "A Survey of Optimization Models for Train Routing and Scheduling," Transportation Science, INFORMS, vol. 32(4), pages 380-404, November.
    17. Pisinger, David, 1995. "A minimal algorithm for the multiple-choice knapsack problem," European Journal of Operational Research, Elsevier, vol. 83(2), pages 394-410, June.
    18. Meng, Qiang & Wang, Tingsong, 2011. "A scenario-based dynamic programming model for multi-period liner ship fleet planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(4), pages 401-413, July.
    19. John H. Park & Burak Kazaz & Scott Webster, 2018. "Surface vs. Air Shipment of Humanitarian Goods under Demand Uncertainty," Production and Operations Management, Production and Operations Management Society, vol. 27(5), pages 928-948, May.
    20. Zoi Nikopoulou, 2017. "Incremental costs for reduction of air pollution from ships: a case study on North European emission control area," Maritime Policy & Management, Taylor & Francis Journals, vol. 44(8), pages 1056-1077, November.
    21. Nikiforos A. Papadakis & Anastassios N. Perakis, 1990. "Deterministic Minimal Time Vessel Routing," Operations Research, INFORMS, vol. 38(3), pages 426-438, June.
    22. Qi, Xiangtong & Song, Dong-Ping, 2012. "Minimizing fuel emissions by optimizing vessel schedules in liner shipping with uncertain port times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(4), pages 863-880.
    23. Thalis Zis & Harilaos. N. Psaraftis, 2019. "Operational measures to mitigate and reverse the potential modal shifts due to environmental legislation," Maritime Policy & Management, Taylor & Francis Journals, vol. 46(1), pages 117-132, January.
    24. Marielle Christiansen & Kjetil Fagerholt & David Ronen, 2004. "Ship Routing and Scheduling: Status and Perspectives," Transportation Science, INFORMS, vol. 38(1), pages 1-18, February.
    25. Gu, Yewen & Wallace, Stein W., 2017. "Scrubber: a potentially overestimated compliance method for the Emission Control Areas - The importance of involving a ship's sailing pattern in the evaluation," Discussion Papers 2017/13, Norwegian School of Economics, Department of Business and Management Science.
    26. Ng, ManWo, 2014. "Distribution-free vessel deployment for liner shipping," European Journal of Operational Research, Elsevier, vol. 238(3), pages 858-862.
    27. Benjamin Legros & Yann Bouchery & Jan Fransoo, 2019. "A time-based policy for empty container management by the consignees," Post-Print hal-02062144, HAL.
    28. Notteboom, Theo E. & Vernimmen, Bert, 2009. "The effect of high fuel costs on liner service configuration in container shipping," Journal of Transport Geography, Elsevier, vol. 17(5), pages 325-337.
    29. Wang, Shuaian & Meng, Qiang, 2012. "Sailing speed optimization for container ships in a liner shipping network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(3), pages 701-714.
    30. Lo, Hong K. & McCord, Mark R., 1998. "Adaptive ship routing through stochastic ocean currents: general formulations and empirical results," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(7), pages 547-561, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuecheng Tian & Ran Yan & Jingwen Qi & Dan Zhuge & Hans Wang, 2022. "A Bi-Level Programming Model for China’s Marine Domestic Emission Control Area Design," Sustainability, MDPI, vol. 14(6), pages 1-15, March.
    2. Chao-Feng Gao & Zhi-Hua Hu, 2021. "Speed Optimization for Container Ship Fleet Deployment Considering Fuel Consumption," Sustainability, MDPI, vol. 13(9), pages 1-18, May.
    3. Tan, Zhijia & Zeng, Xianyang & Shao, Shuai & Chen, Jihong & Wang, Hua, 2022. "Scrubber installation and green fuel for inland river ships with non-identical streamflow," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    4. Tan, Zhijia & Zhang, Ming & Shao, Shuai & Liang, Jinpeng & Sheng, Dian, 2022. "Evasion strategy for a coastal cargo ship with unpunctual arrival penalty under sulfur emission regulation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    5. Yu, Jingjing & Tang, Guolei & Song, Xiangqun, 2022. "Collaboration of vessel speed optimization with berth allocation and quay crane assignment considering vessel service differentiation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    6. Sun, Yulong & Zheng, Jianfeng & Yang, Lingxiao & Li, Xia, 2024. "Allocation and trading schemes of the maritime emissions trading system: Liner shipping route choice and carbon emissions," Transport Policy, Elsevier, vol. 148(C), pages 60-78.
    7. Yang, Lingxiao & Zheng, Jianfeng & Wang, Jian & Hu, Xiaowei, 2023. "The maximal detour liner shipping hub location problem: Improving the applicability of the p-hub center problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    8. Xiangang Lan & Qin Tao & Xincheng Wu, 2023. "Liner-Shipping Network Design with Emission Control Areas: A Real Case Study," Sustainability, MDPI, vol. 15(4), pages 1-23, February.
    9. Qinghe Sun & Li Chen & Mabel C. Chou & Qiang Meng, 2023. "Mitigating the financial risk behind emission cap compliance: A case in maritime transportation," Production and Operations Management, Production and Operations Management Society, vol. 32(1), pages 283-300, January.
    10. Di Wu & Xuejun Ji & Fang Xiao & Shijie Sheng, 2022. "A Location Inventory Routing Optimisation Model and Algorithm for a Remote Island Shipping Network considering Emergency Inventory," Sustainability, MDPI, vol. 14(10), pages 1-22, May.
    11. Haoqing Wang & Wen Yi & Yannick Liu, 2022. "Optimal Route Design for Construction Waste Transportation Systems: Mathematical Models and Solution Algorithms," Mathematics, MDPI, vol. 10(22), pages 1-13, November.
    12. Zeng, Xianyang & Tan, Zhijia & Zhang, Ming & Wang, Tingsong, 2024. "Scrubber installation of inland container ships: Discrepancy between government and carriers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    13. Lai, Xiaofan & Wu, Lingxiao & Wang, Kai & Wang, Fan, 2022. "Robust ship fleet deployment with shipping revenue management," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 169-196.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dongping Song, 2021. "A Literature Review, Container Shipping Supply Chain: Planning Problems and Research Opportunities," Logistics, MDPI, vol. 5(2), pages 1-26, June.
    2. Du, Yuquan & Meng, Qiang & Wang, Shuaian & Kuang, Haibo, 2019. "Two-phase optimal solutions for ship speed and trim optimization over a voyage using voyage report data," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 88-114.
    3. Meng, Qiang & Du, Yuquan & Wang, Yadong, 2016. "Shipping log data based container ship fuel efficiency modeling," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 207-229.
    4. Lee, Chung-Yee & Song, Dong-Ping, 2017. "Ocean container transport in global supply chains: Overview and research opportunities," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 442-474.
    5. Sun, Qinghe & Meng, Qiang & Chou, Mabel C., 2021. "Optimizing voyage charterparty (VCP) arrangement: Laytime negotiation and operations coordination," European Journal of Operational Research, Elsevier, vol. 291(1), pages 263-270.
    6. Olumide F. Abioye & Maxim A. Dulebenets & Junayed Pasha & Masoud Kavoosi, 2019. "A Vessel Schedule Recovery Problem at the Liner Shipping Route with Emission Control Areas," Energies, MDPI, vol. 12(12), pages 1-28, June.
    7. Zhang, Abraham & Zheng, Zhichao & Teo, Chung-Piaw, 2022. "Schedule reliability in liner shipping timetable design: A convex programming approach," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 499-525.
    8. Wang, Shuaian, 2016. "Fundamental properties and pseudo-polynomial-time algorithm for network containership sailing speed optimization," European Journal of Operational Research, Elsevier, vol. 250(1), pages 46-55.
    9. Aydin, N. & Lee, H. & Mansouri, S.A., 2017. "Speed optimization and bunkering in liner shipping in the presence of uncertain service times and time windows at ports," European Journal of Operational Research, Elsevier, vol. 259(1), pages 143-154.
    10. Maxim A. Dulebenets & Junayed Pasha & Olumide F. Abioye & Masoud Kavoosi, 2021. "Vessel scheduling in liner shipping: a critical literature review and future research needs," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 43-106, March.
    11. Wang, Shuaian & Wang, Xinchang, 2016. "A polynomial-time algorithm for sailing speed optimization with containership resource sharing," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 394-405.
    12. Chen Li & Xiangtong Qi & Chung-Yee Lee, 2015. "Disruption Recovery for a Vessel in Liner Shipping," Transportation Science, INFORMS, vol. 49(4), pages 900-921, November.
    13. Ksciuk, Jana & Kuhlemann, Stefan & Tierney, Kevin & Koberstein, Achim, 2023. "Uncertainty in maritime ship routing and scheduling: A Literature review," European Journal of Operational Research, Elsevier, vol. 308(2), pages 499-524.
    14. Sun, Qinghe & Li, Wei & Meng, Qiang, 2024. "Single-leg shipping revenue management for expedited services with ambiguous elasticity in transit-time-sensitive demand," Transportation Research Part B: Methodological, Elsevier, vol. 180(C).
    15. Lee, Chung-Yee & Lee, Hau L. & Zhang, Jiheng, 2015. "The impact of slow ocean steaming on delivery reliability and fuel consumption," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 76(C), pages 176-190.
    16. Zhao, Shuaiqi & Yang, Hualong & Zheng, Jianfeng & Li, Dechang, 2024. "A two-step approach for deploying heterogeneous vessels and designing reliable schedule in liner shipping services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 182(C).
    17. Xin Wen & Qiong Chen & Yu-Qi Yin & Yui-yip Lau, 2023. "Green Vessel Scheduling with Weather Impact and Emission Control Area Consideration," Mathematics, MDPI, vol. 11(24), pages 1-25, December.
    18. Asghari, Mohammad & Jaber, Mohamad Y. & Mirzapour Al-e-hashem, S.M.J., 2023. "Coordinating vessel recovery actions: Analysis of disruption management in a liner shipping service," European Journal of Operational Research, Elsevier, vol. 307(2), pages 627-644.
    19. Wang, Hua & Wang, Shuaian & Meng, Qiang, 2014. "Simultaneous optimization of schedule coordination and cargo allocation for liner container shipping networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 261-273.
    20. Yan, Ran & Wang, Shuaian & Du, Yuquan, 2020. "Development of a two-stage ship fuel consumption prediction and reduction model for a dry bulk ship," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:55:y:2021:i:2:p:491-509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.