IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v161y2025icp1-16.html
   My bibliography  Save this article

A model for speed and fuel refueling strategy of methanol dual-fuel liners with emission control areas

Author

Listed:
  • Gao, Tianhang
  • Tian, Jia
  • Liu, Changjian
  • Huang, Chuan
  • Wu, Hongyu
  • Yuan, Ziwen

Abstract

Methanol dual-fuel (DF) liners can simultaneously use traditional fuel oil and methanol as blended fuels, which can address environmental protection requirements while ensuring economy. This paper presents an optimization model for the speed and refueling strategy of methanol DF liners. A decision-making tool is introduced for shipping companies to develop liner operation plans. A mixed-integer 0–1 planning model is constructed with the objective of minimizing the operating cost of a single voyage of a methanol DF liner, and the optimal solutions for the voyage speed in each segment and the fuel oil and methanol refueling strategy at each port are computed considering the dual-fuel mixing of fuel oil and methanol. In this paper, the validity of the model and algorithm are verified with the AEU3 route of COSCO Shipping as an example, and the results show that installing a scrubber on liners and mixing heavy fuel oil (HFO) and methanol is more economical than mixing very low-sulfur fuel oil (VLSFO) and methanol, considering the existing emission standards. The studied liner should increase its speed in emission control areas (ECAs) and refuel at ports with low prices for fuel oil and methanol. Although the above conclusions are not influenced by changes in the price of methanol, the price difference between HFO and VLSFO, or the carbon allowance price, changes in sulfur emission standards will have a significant effect on the speed and refueling strategy of liners and carbon emissions. This paper provides a theoretical reference for operational decision-making for shipping companies operating methanol DF liners and is of practical value for improving the scientific management of methanol DF liners, enhancing the energy efficiency of ships, and reducing the emission of pollutants from ships.

Suggested Citation

  • Gao, Tianhang & Tian, Jia & Liu, Changjian & Huang, Chuan & Wu, Hongyu & Yuan, Ziwen, 2025. "A model for speed and fuel refueling strategy of methanol dual-fuel liners with emission control areas," Transport Policy, Elsevier, vol. 161(C), pages 1-16.
  • Handle: RePEc:eee:trapol:v:161:y:2025:i:c:p:1-16
    DOI: 10.1016/j.tranpol.2024.11.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X24003524
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2024.11.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shuaian Wang & Dan Zhuge & Lu Zhen & Chung-Yee Lee, 2021. "Liner Shipping Service Planning Under Sulfur Emission Regulations," Transportation Science, INFORMS, vol. 55(2), pages 491-509, March.
    2. Aydin, N. & Lee, H. & Mansouri, S.A., 2017. "Speed optimization and bunkering in liner shipping in the presence of uncertain service times and time windows at ports," European Journal of Operational Research, Elsevier, vol. 259(1), pages 143-154.
    3. Li, Lingyue & Gao, Suixiang & Yang, Wenguo & Xiong, Xing, 2020. "Ship’s response strategy to emission control areas: From the perspective of sailing pattern optimization and evasion strategy selection," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    4. Sheng, Xiaoming & Chew, Ek Peng & Lee, Loo Hay, 2015. "(s,S) policy model for liner shipping refueling and sailing speed optimization problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 76(C), pages 76-92.
    5. Christian Edinger Munk Plum & Peter Neergaard Jensen & David Pisinger, 2014. "Bunker purchasing with contracts," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 16(4), pages 418-435, December.
    6. Wu, Wei-Ming, 2020. "The optimal speed in container shipping: Theory and empirical evidence," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    7. Harilaos N. Psaraftis, 2019. "Speed Optimization vs Speed Reduction: the Choice between Speed Limits and a Bunker Levy," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    8. Tan, Zhijia & Zhang, Ming & Shao, Shuai & Liang, Jinpeng & Sheng, Dian, 2022. "Evasion strategy for a coastal cargo ship with unpunctual arrival penalty under sulfur emission regulation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    9. Wang, Kai & Xue, Yu & Xu, Hao & Huang, Lianzhong & Ma, Ranqi & Zhang, Peng & Jiang, Xiaoli & Yuan, Yupeng & Negenborn, Rudy R. & Sun, Peiting, 2022. "Joint energy consumption optimization method for wing-diesel engine-powered hybrid ships towards a more energy-efficient shipping," Energy, Elsevier, vol. 245(C).
    10. Wang, Shuaian & Meng, Qiang, 2015. "Robust bunker management for liner shipping networks," European Journal of Operational Research, Elsevier, vol. 243(3), pages 789-797.
    11. Izabela Ewa Nielsen & Ngoc Anh Dung Do & Jaejin Jang & Grzegorz Bocewicz, 2016. "Planning of vessel speed and fuel bunkering over a route with speed limits," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 18(4), pages 414-435, December.
    12. Weihao Ma & Tianfu Lu & Dongfang Ma & Dianhai Wang & Fengzhong Qu, 2021. "Ship route and speed multi-objective optimization considering weather conditions and emission control area regulations," Maritime Policy & Management, Taylor & Francis Journals, vol. 48(8), pages 1053-1068, November.
    13. Tan, Roy & Duru, Okan & Thepsithar, Prapisala, 2020. "Assessment of relative fuel cost for dual fuel marine engines along major Asian container shipping routes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan, Roy & Duru, Okan & Thepsithar, Prapisala, 2020. "Assessment of relative fuel cost for dual fuel marine engines along major Asian container shipping routes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    2. Yu, Jingjing & Tang, Guolei & Song, Xiangqun, 2022. "Collaboration of vessel speed optimization with berth allocation and quay crane assignment considering vessel service differentiation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    3. Mulder, J. & Dekker, R., 2016. "Optimization in container liner shipping," Econometric Institute Research Papers EI2016-05, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    4. Guo, Yuhan & Wang, Yiyang & Chen, Yuhan & Wu, Lingxiao & Mao, Wengang, 2024. "Learning-based Pareto-optimum routing of ships incorporating uncertain meteorological and oceanographic forecasts," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 192(C).
    5. Kazemi, Ahmad & Ernst, Andreas T. & Krishnamoorthy, Mohan & Le Bodic, Pierre, 2021. "Locomotive fuel management with inline refueling," European Journal of Operational Research, Elsevier, vol. 293(3), pages 1077-1096.
    6. Zhen, Lu & Wang, Shuaian & Zhuge, Dan, 2017. "Dynamic programming for optimal ship refueling decision," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 100(C), pages 63-74.
    7. Junayed Pasha & Maxim A. Dulebenets & Masoud Kavoosi & Olumide F. Abioye & Oluwatosin Theophilus & Hui Wang & Raphael Kampmann & Weihong Guo, 2020. "Holistic tactical-level planning in liner shipping: an exact optimization approach," Journal of Shipping and Trade, Springer, vol. 5(1), pages 1-35, December.
    8. Shao, Shuai & Xu, Min & Tan, Zhijia & Zhen, Lu, 2024. "Ship deployment problem with green technology adoption for an inland river carrier under non-identical streamflow and speed limits," Transport Policy, Elsevier, vol. 157(C), pages 46-56.
    9. De, Arijit & Choudhary, Alok & Turkay, Metin & Tiwari, Manoj K., 2021. "Bunkering policies for a fuel bunker management problem for liner shipping networks," European Journal of Operational Research, Elsevier, vol. 289(3), pages 927-939.
    10. Adland, Roar & Cariou, Pierre & Wolff, Francois-Charles, 2020. "Optimal ship speed and the cubic law revisited: Empirical evidence from an oil tanker fleet," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    11. Shao, Shuai & Tan, Zhijia & Wang, Tingsong & Liu, Zhiyuan, 2023. "Configuration design of the emission control areas for coastal ships: A Stackelberg game model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
    12. Xi Jiang & Haijun Mao & Yadong Wang & Hao Zhang, 2020. "Liner Shipping Schedule Design for Near-Sea Routes Considering Big Customers’ Preferences on Ship Arrival Time," Sustainability, MDPI, vol. 12(18), pages 1-20, September.
    13. Liqian Yang & Gang Chen & Jinlou Zhao & Niels Gorm Malý Rytter, 2020. "Ship Speed Optimization Considering Ocean Currents to Enhance Environmental Sustainability in Maritime Shipping," Sustainability, MDPI, vol. 12(9), pages 1-24, May.
    14. Zhen, Lu & Hu, Yi & Wang, Shuaian & Laporte, Gilbert & Wu, Yiwei, 2019. "Fleet deployment and demand fulfillment for container shipping liners," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 15-32.
    15. Zhang, Ming & Zeng, Xianyang & Tan, Zhijia, 2024. "Joint decision of green technology adoption and sailing pattern for a coastal ship under ECAs," Transport Policy, Elsevier, vol. 146(C), pages 102-113.
    16. Tan, Zhijia & Zhang, Ming & Shao, Shuai & Liang, Jinpeng & Sheng, Dian, 2022. "Evasion strategy for a coastal cargo ship with unpunctual arrival penalty under sulfur emission regulation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    17. Dan Zhuge & Shuaian Wang & Lu Zhen & Gilbert Laporte, 2021. "Subsidy design in a vessel speed reduction incentive program under government policies," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(3), pages 344-358, April.
    18. Zeng, Xianyang & Tan, Zhijia & Zhang, Ming & Wang, Tingsong, 2024. "Scrubber installation of inland container ships: Discrepancy between government and carriers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    19. Omholt-Jensen, Simen & Fagerholt, Kjetil & Meisel, Frank, 2025. "Fleet repositioning in the tramp ship routing and scheduling problem with bunker optimization: A matheuristic solution approach," European Journal of Operational Research, Elsevier, vol. 321(1), pages 88-106.
    20. Fuentes, Gabriel, 2021. "Generating bunkering statistics from AIS data: A machine learning approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:161:y:2025:i:c:p:1-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.