IDEAS home Printed from https://ideas.repec.org/a/pal/marecl/v16y2014i4p418-435.html
   My bibliography  Save this article

Bunker purchasing with contracts

Author

Listed:
  • Christian Edinger Munk Plum

    (1] Maersk Line, Esplanaden 50, 1098 Copenhagen K, Denmark.[2] Management Engineering, Technical University of Denmark, Produktionstorvet 426, 2800 Kgs. Lyngby, Denmark)

  • Peter Neergaard Jensen

    (Maersk Oil Trading, Esplanaden 50, 1098 Copenhagen K, Denmark)

  • David Pisinger

    (Management Engineering, Technical University of Denmark, Produktionstorvet 426, 2800 Kgs. Lyngby, Denmark)

Abstract

The cost for bunker fuel represents a major part of the daily running costs of liner shipping vessels. The vessels, sailing on a fixed roundtrip of ports, can lift bunker at these ports, having differing and fluctuating prices. The stock of bunker on a vessel is subject to a number of operational constraints such as capacity limits, reserve requirements and sulphur content. Contracts are often used for bunker purchasing, ensuring supply and often giving a discounted price. A contract can supply any vessel in a period and port, and is thus a shared resource between vessels, which must be distributed optimally to reduce overall costs. The Bunker Purchasing with Contracts Problem has been formulated as a mixed integer programme, which has been Dantzig-Wolfe decomposed. To solve it, a novel column generation algorithm has been developed. The algorithm has been run on a series of real-world instances with up to 500+ vessels and 500+ contracts, and provide near optimal solutions. This makes it possible for a major liner shipping company to plan bunker purchasing on a global level, and provides an efficient tool for assessing new contracts.

Suggested Citation

  • Christian Edinger Munk Plum & Peter Neergaard Jensen & David Pisinger, 2014. "Bunker purchasing with contracts," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 16(4), pages 418-435, December.
  • Handle: RePEc:pal:marecl:v:16:y:2014:i:4:p:418-435
    as

    Download full text from publisher

    File URL: http://www.palgrave-journals.com/mel/journal/v16/n4/pdf/mel20147a.pdf
    File Function: Link to full text PDF
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: http://www.palgrave-journals.com/mel/journal/v16/n4/full/mel20147a.html
    File Function: Link to full text HTML
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gu, Yewen & Wallace, Stein W. & Wang, Xin, 2016. "Integrated maritime bunker management with stochastic fuel prices and new emission regulations," Discussion Papers 2016/13, Norwegian School of Economics, Department of Business and Management Science.
    2. Wang, Yadong & Meng, Qiang, 2021. "Optimizing freight rate of spot market containers with uncertainties in shipping demand and available ship capacity," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 314-332.
    3. Wang, Shuaian & Meng, Qiang, 2015. "Robust bunker management for liner shipping networks," European Journal of Operational Research, Elsevier, vol. 243(3), pages 789-797.
    4. Tan, Roy & Duru, Okan & Thepsithar, Prapisala, 2020. "Assessment of relative fuel cost for dual fuel marine engines along major Asian container shipping routes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    5. Pedrielli, Giulia & Lee, Loo Hay & Ng, Szu Hui, 2015. "Optimal bunkering contract in a buyer–seller supply chain under price and consumption uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 77(C), pages 77-94.
    6. Kazemi, Ahmad & Ernst, Andreas T. & Krishnamoorthy, Mohan & Le Bodic, Pierre, 2021. "Locomotive fuel management with inline refueling," European Journal of Operational Research, Elsevier, vol. 293(3), pages 1077-1096.
    7. Ghosh, Sugoutam & Lee, Loo Hay & Ng, Szu Hui, 2015. "Bunkering decisions for a shipping liner in an uncertain environment with service contract," European Journal of Operational Research, Elsevier, vol. 244(3), pages 792-802.
    8. Zhen, Lu & Wang, Shuaian & Zhuge, Dan, 2017. "Dynamic programming for optimal ship refueling decision," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 100(C), pages 63-74.
    9. Mulder, J. & Dekker, R., 2016. "Optimization in container liner shipping," Econometric Institute Research Papers EI2016-05, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:marecl:v:16:y:2014:i:4:p:418-435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.