IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i12p2380-d241706.html
   My bibliography  Save this article

A Vessel Schedule Recovery Problem at the Liner Shipping Route with Emission Control Areas

Author

Listed:
  • Olumide F. Abioye

    (Department of Civil & Environmental Engineering, Florida A&M University-Florida State University, 2525 Pottsdamer Street, Building B, Suite B339, Tallahassee, FL 32310-6046, USA)

  • Maxim A. Dulebenets

    (Department of Civil & Environmental Engineering, Florida A&M University-Florida State University, 2525 Pottsdamer Street, Building A, Suite A124, Tallahassee, FL 32310-6046, USA)

  • Junayed Pasha

    (Department of Civil & Environmental Engineering, Florida A&M University-Florida State University, 2525 Pottsdamer Street, Building B, Suite B339, Tallahassee, FL 32310-6046, USA)

  • Masoud Kavoosi

    (Department of Civil & Environmental Engineering, Florida A&M University-Florida State University, 2525 Pottsdamer Street, Building B, Suite B339, Tallahassee, FL 32310-6046, USA)

Abstract

Liner shipping is a vital component of the world trade. Liner shipping companies usually operate fixed routes and announce their schedules. However, disruptions in sea and/or at ports affect the planned vessel schedules. Moreover, some liner shipping routes pass through the areas, designated by the International Maritime Organization (IMO) as emission control areas (ECAs). IMO imposes restrictions on the type of fuel that can be used by vessels within ECAs. The vessel schedule recovery problem becomes more complex when disruptions occur at such liner shipping routes, as liner shipping companies must comply with the IMO regulations. This study presents a novel mixed-integer nonlinear mathematical model for the green vessel schedule recovery problem, which considers two recovery strategies, including vessel sailing speed adjustment and port skipping. The objective aims to minimize the total profit loss, endured by a given liner shipping company due to disruptions in the planned operations. The nonlinear model is linearized and solved using CPLEX. A number of computational experiments are conducted for the liner shipping route, passing through ECAs. Important managerial insights reveal that the proposed methodology can assist liner shipping companies with efficient vessel schedule recovery, minimize the monetary losses due to disruptions in vessel schedules, and improve energy efficiency as well as environmental sustainability.

Suggested Citation

  • Olumide F. Abioye & Maxim A. Dulebenets & Junayed Pasha & Masoud Kavoosi, 2019. "A Vessel Schedule Recovery Problem at the Liner Shipping Route with Emission Control Areas," Energies, MDPI, vol. 12(12), pages 1-28, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2380-:d:241706
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/12/2380/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/12/2380/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kwang-Il Kim & Keon Myung Lee, 2018. "Dynamic Programming-Based Vessel Speed Adjustment for Energy Saving and Emission Reduction," Energies, MDPI, vol. 11(5), pages 1-15, May.
    2. Marielle Christiansen & Kjetil Fagerholt & David Ronen, 2004. "Ship Routing and Scheduling: Status and Perspectives," Transportation Science, INFORMS, vol. 38(1), pages 1-18, February.
    3. Wang, Shuaian & Meng, Qiang, 2012. "Liner ship route schedule design with sea contingency time and port time uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 615-633.
    4. Christiansen, Marielle & Fagerholt, Kjetil & Nygreen, Bjørn & Ronen, David, 2013. "Ship routing and scheduling in the new millennium," European Journal of Operational Research, Elsevier, vol. 228(3), pages 467-483.
    5. Song, Dong-Ping & Li, Dong & Drake, Paul, 2015. "Multi-objective optimization for planning liner shipping service with uncertain port times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 84(C), pages 1-22.
    6. Li, Chen & Qi, Xiangtong & Song, Dongping, 2016. "Real-time schedule recovery in liner shipping service with regular uncertainties and disruption events," Transportation Research Part B: Methodological, Elsevier, vol. 93(PB), pages 762-788.
    7. Dulebenets, Maxim A. & Ozguven, Eren Erman, 2017. "Vessel scheduling in liner shipping: Modeling transport of perishable assets," International Journal of Production Economics, Elsevier, vol. 184(C), pages 141-156.
    8. Wang, Shuaian & Meng, Qiang, 2012. "Sailing speed optimization for container ships in a liner shipping network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(3), pages 701-714.
    9. Dulebenets, Maxim A., 2018. "A comprehensive multi-objective optimization model for the vessel scheduling problem in liner shipping," International Journal of Production Economics, Elsevier, vol. 196(C), pages 293-318.
    10. Wang, Shuaian & Meng, Qiang, 2012. "Robust schedule design for liner shipping services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(6), pages 1093-1106.
    11. Qiang Meng & Shuaian Wang & Henrik Andersson & Kristian Thun, 2014. "Containership Routing and Scheduling in Liner Shipping: Overview and Future Research Directions," Transportation Science, INFORMS, vol. 48(2), pages 265-280, May.
    12. Wang, Shuaian & Meng, Qiang & Liu, Zhiyuan, 2013. "Bunker consumption optimization methods in shipping: A critical review and extensions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 53(C), pages 49-62.
    13. Qi, Xiangtong & Song, Dong-Ping, 2012. "Minimizing fuel emissions by optimizing vessel schedules in liner shipping with uncertain port times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(4), pages 863-880.
    14. Wang, Shuaian & Qu, Xiaobo & Yang, Ying, 2015. "Estimation of the perceived value of transit time for containerized cargoes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 298-308.
    15. Brouer, Berit D. & Dirksen, Jakob & Pisinger, David & Plum, Christian E.M. & Vaaben, Bo, 2013. "The Vessel Schedule Recovery Problem (VSRP) – A MIP model for handling disruptions in liner shipping," European Journal of Operational Research, Elsevier, vol. 224(2), pages 362-374.
    16. H B Bendall & A F Stent, 2001. "A Scheduling Model for a High Speed Containership Service: A Hub and Spoke Short-Sea Application," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 3(3), pages 262-277, September.
    17. Lee, Chung-Yee & Lee, Hau L. & Zhang, Jiheng, 2015. "The impact of slow ocean steaming on delivery reliability and fuel consumption," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 76(C), pages 176-190.
    18. George N. Sakalis & George J. Tzortzis & Christos A. Frangopoulos, 2019. "Intertemporal Static and Dynamic Optimization of Synthesis, Design, and Operation of Integrated Energy Systems of Ships," Energies, MDPI, vol. 12(5), pages 1-50, March.
    19. Theo E Notteboom, 2006. "The Time Factor in Liner Shipping Services," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 8(1), pages 19-39, March.
    20. Chen Li & Xiangtong Qi & Chung-Yee Lee, 2015. "Disruption Recovery for a Vessel in Liner Shipping," Transportation Science, INFORMS, vol. 49(4), pages 900-921, November.
    21. Piera Centobelli & Roberto Cerchione & Emilio Esposito, 2018. "Environmental Sustainability and Energy-Efficient Supply Chain Management: A Review of Research Trends and Proposed Guidelines," Energies, MDPI, vol. 11(2), pages 1-36, January.
    22. D Ronen, 2011. "The effect of oil price on containership speed and fleet size," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 211-216, January.
    23. Jomon Aliyas Paul & Michael J Maloni, 2010. "Modeling the effects of port disasters," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 12(2), pages 127-146, June.
    24. Mansouri, S. Afshin & Lee, Habin & Aluko, Oluwakayode, 2015. "Multi-objective decision support to enhance environmental sustainability in maritime shipping: A review and future directions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 78(C), pages 3-18.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maxim A. Dulebenets & Junayed Pasha & Olumide F. Abioye & Masoud Kavoosi, 2021. "Vessel scheduling in liner shipping: a critical literature review and future research needs," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 43-106, March.
    2. Asghari, Mohammad & Jaber, Mohamad Y. & Mirzapour Al-e-hashem, S.M.J., 2023. "Coordinating vessel recovery actions: Analysis of disruption management in a liner shipping service," European Journal of Operational Research, Elsevier, vol. 307(2), pages 627-644.
    3. Vasileios Kapsalis & Grigorios Kyriakopoulos & Miltiadis Zamparas & Athanasios Tolis, 2021. "Investigation of the Photon to Charge Conversion and Its Implication on Photovoltaic Cell Efficient Operation," Energies, MDPI, vol. 14(11), pages 1-16, May.
    4. Jaeung Cha & Jinwoo Lee & Changhee Lee & Yulseong Kim, 2021. "Legal Disputes under Time Charter in Connection with the Stranding of the MV Ever Given," Sustainability, MDPI, vol. 13(19), pages 1-25, September.
    5. Jiajun Shen & Guangchuan Yang, 2020. "Crash Risk Assessment for Heterogeneity Traffic and Different Vehicle-Following Patterns Using Microscopic Traffic Flow Data," Sustainability, MDPI, vol. 12(23), pages 1-18, November.
    6. Zhaolin Cheng & Laijun Zhao & Huiyong Li, 2020. "A Transportation Network Paradox: Consideration of Travel Time and Health Damage due to Pollution," Sustainability, MDPI, vol. 12(19), pages 1-22, October.
    7. Mohamed Ali Kammoun & Sadok Turki & Nidhal Rezg, 2020. "Optimization of Flight Rescheduling Problem under Carbon Tax," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    8. Nestor Goicoechea & Luis María Abadie, 2021. "Optimal Slow Steaming Speed for Container Ships under the EU Emission Trading System," Energies, MDPI, vol. 14(22), pages 1-25, November.
    9. Junayed Pasha & Maxim A. Dulebenets & Masoud Kavoosi & Olumide F. Abioye & Oluwatosin Theophilus & Hui Wang & Raphael Kampmann & Weihong Guo, 2020. "Holistic tactical-level planning in liner shipping: an exact optimization approach," Journal of Shipping and Trade, Springer, vol. 5(1), pages 1-35, December.
    10. Marek Drliciak & Jan Celko & Michal Cingel & Dusan Jandacka, 2020. "Traffic Volumes as a Modal Split Parameter," Sustainability, MDPI, vol. 12(24), pages 1-21, December.
    11. Ramon Sanchez-Iborra & Luis Bernal-Escobedo & José Santa, 2020. "Eco-Efficient Mobility in Smart City Scenarios," Sustainability, MDPI, vol. 12(20), pages 1-15, October.
    12. Archetti, Claudia & Peirano, Lorenzo & Speranza, M. Grazia, 2022. "Optimization in multimodal freight transportation problems: A Survey," European Journal of Operational Research, Elsevier, vol. 299(1), pages 1-20.
    13. Antonio Martínez Raya & Víctor M. González-Sánchez, 2021. "Efficiency and Sustainability of Regional Aviation on Insular Territories of the European Union: A Case Study of Public Service Obligations on Scheduled Air Routes among the Balearic Islands," Sustainability, MDPI, vol. 13(7), pages 1-31, April.
    14. Masoud Kavoosi & Maxim A. Dulebenets & Junayed Pasha & Olumide F. Abioye & Ren Moses & John Sobanjo & Eren E. Ozguven, 2020. "Development of Algorithms for Effective Resource Allocation among Highway–Rail Grade Crossings: A Case Study for the State of Florida," Energies, MDPI, vol. 13(6), pages 1-28, March.
    15. Ana María Peco Chacón & Isaac Segovia Ramírez & Fausto Pedro García Márquez, 2020. "False Alarms Analysis of Wind Turbine Bearing System," Sustainability, MDPI, vol. 12(19), pages 1-11, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Chung-Yee & Song, Dong-Ping, 2017. "Ocean container transport in global supply chains: Overview and research opportunities," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 442-474.
    2. Dulebenets, Maxim A., 2018. "A comprehensive multi-objective optimization model for the vessel scheduling problem in liner shipping," International Journal of Production Economics, Elsevier, vol. 196(C), pages 293-318.
    3. Aydin, N. & Lee, H. & Mansouri, S.A., 2017. "Speed optimization and bunkering in liner shipping in the presence of uncertain service times and time windows at ports," European Journal of Operational Research, Elsevier, vol. 259(1), pages 143-154.
    4. Maxim A. Dulebenets & Junayed Pasha & Olumide F. Abioye & Masoud Kavoosi, 2021. "Vessel scheduling in liner shipping: a critical literature review and future research needs," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 43-106, March.
    5. Li, Chen & Qi, Xiangtong & Song, Dongping, 2016. "Real-time schedule recovery in liner shipping service with regular uncertainties and disruption events," Transportation Research Part B: Methodological, Elsevier, vol. 93(PB), pages 762-788.
    6. Asghari, Mohammad & Jaber, Mohamad Y. & Mirzapour Al-e-hashem, S.M.J., 2023. "Coordinating vessel recovery actions: Analysis of disruption management in a liner shipping service," European Journal of Operational Research, Elsevier, vol. 307(2), pages 627-644.
    7. Song, Dong-Ping & Li, Dong & Drake, Paul, 2015. "Multi-objective optimization for planning liner shipping service with uncertain port times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 84(C), pages 1-22.
    8. Zhang, Abraham & Zheng, Zhichao & Teo, Chung-Piaw, 2022. "Schedule reliability in liner shipping timetable design: A convex programming approach," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 499-525.
    9. Dongping Song, 2021. "A Literature Review, Container Shipping Supply Chain: Planning Problems and Research Opportunities," Logistics, MDPI, vol. 5(2), pages 1-26, June.
    10. Chen Li & Xiangtong Qi & Chung-Yee Lee, 2015. "Disruption Recovery for a Vessel in Liner Shipping," Transportation Science, INFORMS, vol. 49(4), pages 900-921, November.
    11. Akyüz, M. Hakan & Lee, Chung-Yee, 2016. "Service type assignment and container routing with transit time constraints and empty container repositioning for liner shipping service networks," Transportation Research Part B: Methodological, Elsevier, vol. 88(C), pages 46-71.
    12. Dulebenets, Maxim A. & Ozguven, Eren Erman, 2017. "Vessel scheduling in liner shipping: Modeling transport of perishable assets," International Journal of Production Economics, Elsevier, vol. 184(C), pages 141-156.
    13. Shuaian Wang & Dan Zhuge & Lu Zhen & Chung-Yee Lee, 2021. "Liner Shipping Service Planning Under Sulfur Emission Regulations," Transportation Science, INFORMS, vol. 55(2), pages 491-509, March.
    14. Hamed Hasheminia & Changmin Jiang, 2017. "Strategic trade-off between vessel delay and schedule recovery: an empirical analysis of container liner shipping," Maritime Policy & Management, Taylor & Francis Journals, vol. 44(4), pages 458-473, May.
    15. Sun, X.T. & Chung, S.H. & Chan, Felix T.S. & Wang, Zheng, 2018. "The impact of liner shipping unreliability on the production–distribution scheduling of a decentralized manufacturing system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 242-269.
    16. Wang, Shuaian & Wang, Xinchang, 2016. "A polynomial-time algorithm for sailing speed optimization with containership resource sharing," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 394-405.
    17. Wang, Shuaian & Meng, Qiang, 2015. "Robust bunker management for liner shipping networks," European Journal of Operational Research, Elsevier, vol. 243(3), pages 789-797.
    18. Ksciuk, Jana & Kuhlemann, Stefan & Tierney, Kevin & Koberstein, Achim, 2023. "Uncertainty in maritime ship routing and scheduling: A Literature review," European Journal of Operational Research, Elsevier, vol. 308(2), pages 499-524.
    19. Lee, Chung-Yee & Lee, Hau L. & Zhang, Jiheng, 2015. "The impact of slow ocean steaming on delivery reliability and fuel consumption," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 76(C), pages 176-190.
    20. Mulder, Judith & Dekker, Rommert, 2019. "Designing robust liner shipping schedules: Optimizing recovery actions and buffer times," European Journal of Operational Research, Elsevier, vol. 272(1), pages 132-146.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2380-:d:241706. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.