IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v47y2011i4p401-413.html
   My bibliography  Save this article

A scenario-based dynamic programming model for multi-period liner ship fleet planning

Author

Listed:
  • Meng, Qiang
  • Wang, Tingsong

Abstract

This paper proposes a more realistic multi-period liner ship fleet planning problem for a liner container shipping company than has been studied in previous literature. The proposed problem is formulated as a scenario-based dynamic programming model consisting of a number of integer linear programming formulations for each single planning period, and the model can be solved efficiently by a shortest path algorithm on an acyclic network. A numerical example is carried out to illustrate the applicability of the proposed model and solution method. The numerical results show that chartering in ships may not always be a better policy for a long-term planning horizon though it is much cheaper than buying ships in the short-term. Purchasing ships seems to be a more profitable investment in the long run.

Suggested Citation

  • Meng, Qiang & Wang, Tingsong, 2011. "A scenario-based dynamic programming model for multi-period liner ship fleet planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(4), pages 401-413, July.
  • Handle: RePEc:eee:transe:v:47:y:2011:i:4:p:401-413
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554510001250
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Shuaian & Meng, Qiang, 2012. "Liner ship route schedule design with sea contingency time and port time uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 615-633.
    2. repec:pal:marecl:v:19:y:2017:i:4:d:10.1057_mel.2016.11 is not listed on IDEAS
    3. Dong, Jing-Xin & Lee, Chung-Yee & Song, Dong-Ping, 2015. "Joint service capacity planning and dynamic container routing in shipping network with uncertain demands," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 404-421.
    4. Meng, Qiang & Wang, Tingsong & Wang, Shuaian, 2012. "Short-term liner ship fleet planning with container transshipment and uncertain container shipment demand," European Journal of Operational Research, Elsevier, vol. 223(1), pages 96-105.
    5. Wang, Hua & Wang, Shuaian & Meng, Qiang, 2014. "Simultaneous optimization of schedule coordination and cargo allocation for liner container shipping networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 261-273.
    6. Song, Dong-Ping & Dong, Jing-Xin, 2012. "Cargo routing and empty container repositioning in multiple shipping service routes," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1556-1575.
    7. Wang, Shuaian & Meng, Qiang & Sun, Zhuo, 2013. "Container routing in liner shipping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 1-7.
    8. Wang, Tingsong & Meng, Qiang & Wang, Shuaian & Tan, Zhijia, 2013. "Risk management in liner ship fleet deployment: A joint chance constrained programming model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 60(C), pages 1-12.
    9. Wang, Shuaian & Meng, Qiang, 2012. "Sailing speed optimization for container ships in a liner shipping network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(3), pages 701-714.
    10. Wang, Shuaian & Meng, Qiang, 2012. "Robust schedule design for liner shipping services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(6), pages 1093-1106.
    11. Wang, Shuaian & Meng, Qiang, 2012. "Liner ship fleet deployment with container transshipment operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(2), pages 470-484.
    12. Wang, Shuaian, 2013. "Essential elements in tactical planning models for container liner shipping," Transportation Research Part B: Methodological, Elsevier, vol. 54(C), pages 84-99.
    13. Arslan, Ayşe N. & Papageorgiou, Dimitri J., 2017. "Bulk ship fleet renewal and deployment under uncertainty: A multi-stage stochastic programming approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 97(C), pages 69-96.
    14. Christiansen, Marielle & Fagerholt, Kjetil & Nygreen, Bjørn & Ronen, David, 2013. "Ship routing and scheduling in the new millennium," European Journal of Operational Research, Elsevier, vol. 228(3), pages 467-483.
    15. Meng, Qiang & Wang, Shuaian, 2012. "Liner ship fleet deployment with week-dependent container shipment demand," European Journal of Operational Research, Elsevier, vol. 222(2), pages 241-252.
    16. Wang, Shuaian, 2014. "A novel hybrid-link-based container routing model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 165-175.
    17. Li, Ling & Wang, Bin & Cook, David P., 2015. "Reprint of “Enhancing green supply chain initiatives via empty container reuse”," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 74(C), pages 109-123.
    18. Wang, Shuaian & Meng, Qiang & Bell, Michael G.H., 2013. "Liner ship route capacity utilization estimation with a bounded polyhedral container shipment demand pattern," Transportation Research Part B: Methodological, Elsevier, vol. 47(C), pages 57-76.
    19. Zhen, Lu & Wang, Shuaian & Zhuge, Dan, 2017. "Dynamic programming for optimal ship refueling decision," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 100(C), pages 63-74.
    20. Bakkehaug, Rikard & Eidem, Eirik Stamsø & Fagerholt, Kjetil & Hvattum, Lars Magnus, 2014. "A stochastic programming formulation for strategic fleet renewal in shipping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 60-76.
    21. Pantuso, Giovanni & Fagerholt, Kjetil & Hvattum, Lars Magnus, 2014. "A survey on maritime fleet size and mix problems," European Journal of Operational Research, Elsevier, vol. 235(2), pages 341-349.
    22. Li, Ling & Wang, Bin & Cook, David P., 2014. "Enhancing green supply chain initiatives via empty container reuse," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 190-204.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:47:y:2011:i:4:p:401-413. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.