IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v322y2025ics0360544225013623.html
   My bibliography  Save this article

A novel multivariable coupling optimization method of wind-assisted propulsion system for a large crude carrier

Author

Listed:
  • Wang, Zhuang
  • Chen, Li
  • Huang, Lianzhong
  • Wang, Kai
  • Ma, Ranqi
  • Wang, Bin

Abstract

Wind-assisted propulsion systems (WAPSs) are increasingly valued in the shipping sector due to their potential to reduce fuel consumption and greenhouse gas (GHG) emissions. However, optimizing the wing-sail angle of attack alone, without considering the coupled effects with other variables, restricts the potential for maximizing energy efficiency. To address this issue, this paper proposes a novel multivariable coupling optimization method. At its core, the multivariables of route, ship speed, ship trim, and angle of attack are optimized in a coupled manner. First, a relatively accurate mathematical model of the WAPS is established, providing a fine representation of the system dynamics. Subsequently, the optimization problem is carefully formulated to minimize the fuel consumption. To tackle the inherent nonlinearity of this optimization problem, the optimization method that integrates sea condition feature recognition and maximum thrust coefficient strategy with an improved particle swarm optimization algorithm is invented. Finally, the method's superiority is validated using three real-world sailing cases of a large crude carrier. The results showed that as much as 8.60 % of fuel consumption and GHG emissions are reduced. Moreover, insight analysis reveals that in regions with abundant wind resources, coupling optimization can help the wing-sail achieve greater thrust performance.

Suggested Citation

  • Wang, Zhuang & Chen, Li & Huang, Lianzhong & Wang, Kai & Ma, Ranqi & Wang, Bin, 2025. "A novel multivariable coupling optimization method of wind-assisted propulsion system for a large crude carrier," Energy, Elsevier, vol. 322(C).
  • Handle: RePEc:eee:energy:v:322:y:2025:i:c:s0360544225013623
    DOI: 10.1016/j.energy.2025.135720
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225013623
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135720?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Zhuang & Chen, Li & Wang, Bin & Huang, Lianzhong & Wang, Kai & Ma, Ranqi, 2023. "Integrated optimization of speed schedule and energy management for a hybrid electric cruise ship considering environmental factors," Energy, Elsevier, vol. 282(C).
    2. Todd Chou & Vasileios Kosmas & Michele Acciaro & Katharina Renken, 2021. "A Comeback of Wind Power in Shipping: An Economic and Operational Review on the Wind-Assisted Ship Propulsion Technology," Sustainability, MDPI, vol. 13(4), pages 1-16, February.
    3. Wang, Kai & Xue, Yu & Xu, Hao & Huang, Lianzhong & Ma, Ranqi & Zhang, Peng & Jiang, Xiaoli & Yuan, Yupeng & Negenborn, Rudy R. & Sun, Peiting, 2022. "Joint energy consumption optimization method for wing-diesel engine-powered hybrid ships towards a more energy-efficient shipping," Energy, Elsevier, vol. 245(C).
    4. Traut, Michael & Gilbert, Paul & Walsh, Conor & Bows, Alice & Filippone, Antonio & Stansby, Peter & Wood, Ruth, 2014. "Propulsive power contribution of a kite and a Flettner rotor on selected shipping routes," Applied Energy, Elsevier, vol. 113(C), pages 362-372.
    5. Du, Yuquan & Meng, Qiang & Wang, Shuaian & Kuang, Haibo, 2019. "Two-phase optimal solutions for ship speed and trim optimization over a voyage using voyage report data," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 88-114.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ignė Stalmokaitė & Tommy Larsson Segerlind & Johanna Yliskylä‐Peuralahti, 2023. "Revival of wind‐powered shipping: Comparing the early‐stage innovation process of an incumbent and a newcomer firm," Business Strategy and the Environment, Wiley Blackwell, vol. 32(2), pages 958-975, February.
    2. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Tino Vidović & Jakov Šimunović & Gojmir Radica & Željko Penga, 2023. "Systematic Overview of Newly Available Technologies in the Green Maritime Sector," Energies, MDPI, vol. 16(2), pages 1-26, January.
    4. Wang, Kai & Li, Zhongwei & Zhang, Rui & Ma, Ranqi & Huang, Lianzhong & Wang, Zhuang & Jiang, Xiaoli, 2025. "Computational fluid dynamics-based ship energy-saving technologies: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    5. Li, Zhijun & Fei, Jiangang & Du, Yuquan & Ong, Kok-Leong & Arisian, Sobhan, 2024. "A near real-time carbon accounting framework for the decarbonization of maritime transport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 191(C).
    6. Asghari, Mohammad & Jaber, Mohamad Y. & Mirzapour Al-e-hashem, S.M.J., 2023. "Coordinating vessel recovery actions: Analysis of disruption management in a liner shipping service," European Journal of Operational Research, Elsevier, vol. 307(2), pages 627-644.
    7. Orestis Schinas & Niklas Bergmann, 2021. "The Short-Term Cost of Greening the Global Fleet," Sustainability, MDPI, vol. 13(16), pages 1-32, August.
    8. Yan, Ran & Wang, Shuaian & Du, Yuquan, 2020. "Development of a two-stage ship fuel consumption prediction and reduction model for a dry bulk ship," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    9. Wen Yi & Robyn Phipps & Hans Wang, 2020. "Sustainable Ship Loading Planning for Prefabricated Products in the Construction Industry," Sustainability, MDPI, vol. 12(21), pages 1-12, October.
    10. Barone, Giovanni & Buonomano, Annamaria & Del Papa, Gianluca & Maka, Robert & Palombo, Adolfo, 2023. "How to achieve energy efficiency and sustainability of large ships: a new tool to optimize the operation of on-board diesel generators," Energy, Elsevier, vol. 282(C).
    11. John E. Candelo-Beccera & Leonardo Bohórquez Maldonado & Edwin Paipa Sanabria & Hernán Vergara Pestana & José Jiménez García, 2023. "Technological Alternatives for Electric Propulsion Systems in the Waterway Sector," Energies, MDPI, vol. 16(23), pages 1-16, November.
    12. Sun, Xuting & Chung, Sai-Ho & Choi, Tsan-Ming & Sheu, Jiuh-Biing & Ma, Hoi Lam, 2020. "Combating lead-time uncertainty in global supply chain's shipment-assignment: Is it wise to be risk-averse?," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 406-434.
    13. Salman Farrukh & Mingqiang Li & Georgios D. Kouris & Dawei Wu & Karl Dearn & Zacharias Yerasimou & Pavlos Diamantis & Kostas Andrianos, 2023. "Pathways to Decarbonization of Deep-Sea Shipping: An Aframax Case Study," Energies, MDPI, vol. 16(22), pages 1-26, November.
    14. Buonomano, Annamaria & Del Papa, Gianluca & Giuzio, Giovanni Francesco & Maka, Robert & Palombo, Adolfo & Russo, Giuseppe, 2025. "Design and retrofit towards zero-emission ships: Decarbonization solutions for sustainable shipping," Renewable and Sustainable Energy Reviews, Elsevier, vol. 213(C).
    15. Yan, Ran & Yang, Dong & Wang, Tianyu & Mo, Haoyu & Wang, Shuaian, 2024. "Improving ship energy efficiency: Models, methods, and applications," Applied Energy, Elsevier, vol. 368(C).
    16. Xu, Lang & Wu, Jiyuan & Yan, Ran & Chen, Jihong, 2025. "Is international shipping in right direction towards carbon emissions control?," Transport Policy, Elsevier, vol. 166(C), pages 189-201.
    17. Guo, Wenqiang & Zhang, Xinyu & Ge, Ying-En & Du, Yuquan, 2025. "Deep Q-network and knowledge jointly-driven ship operational efficiency optimization in a seaport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 197(C).
    18. Liu, Shujun & Wang, Yao & Liu, Qi & Panchal, Satyam & Zhao, Jiapei & Fowler, Michael & Fraser, Roydon & Yuan, Jinliang, 2024. "Thermal equalization design for the battery energy storage system (BESS) of a fully electric ship," Energy, Elsevier, vol. 312(C).
    19. Yan, Ran & Wang, Shuaian & Psaraftis, Harilaos N., 2021. "Data analytics for fuel consumption management in maritime transportation: Status and perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    20. Guo, Yuhan & Wang, Yiyang & Chen, Yuhan & Wu, Lingxiao & Mao, Wengang, 2024. "Learning-based Pareto-optimum routing of ships incorporating uncertain meteorological and oceanographic forecasts," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 192(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:322:y:2025:i:c:s0360544225013623. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.