IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i12p4908-d372235.html
   My bibliography  Save this article

Multiscale Quantile Correlation Coefficient: Measuring Tail Dependence of Financial Time Series

Author

Listed:
  • Chao Xu

    (School of Economics and Management, Beijing Jiaotong University, Beijing 100044, China)

  • Jinchuan Ke

    (School of Economics and Management, Beijing Jiaotong University, Beijing 100044, China)

  • Xiaojun Zhao

    (School of Economics and Management, Beijing Jiaotong University, Beijing 100044, China)

  • Xiaofang Zhao

    (School of Economics and Management, Beijing Jiaotong University, Beijing 100044, China)

Abstract

In the context of the frequent occurrence of extreme events, measuring the tail dependence of financial time series is essential for maintaining the sustainable development of financial markets. In this paper, a multiscale quantile correlation coefficient (MQCC) is proposed to measure the tail dependence of financial time series. The new MQCC method consists of two parts: the multiscale analysis and the correlation analysis. In the multiscale analysis, the coarse graining approach is used to study the financial time series on multiple temporal scales. In the correlation analysis, the quantile correlation coefficient is applied to quantify the correlation strength of different data quantiles, especially regarding the difference and the symmetry of tails. One reason to adopt this method is that the conditional distribution of the explanatory variables can be characterized by the quantile regression, rather than simply by the conditional expectation analysis in the traditional regression. By applying the MQCC method in the financial markets of different regions, many interesting results can be obtained. It is worth noting that there are significant differences in tail dependence between different types of financial markets.

Suggested Citation

  • Chao Xu & Jinchuan Ke & Xiaojun Zhao & Xiaofang Zhao, 2020. "Multiscale Quantile Correlation Coefficient: Measuring Tail Dependence of Financial Time Series," Sustainability, MDPI, vol. 12(12), pages 1-24, June.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:12:p:4908-:d:372235
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/12/4908/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/12/4908/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bollerslev, Tim & Engle, Robert F & Wooldridge, Jeffrey M, 1988. "A Capital Asset Pricing Model with Time-Varying Covariances," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 116-131, February.
    2. Guillermo A. Calvo & Leonardo Leiderman & Carmen M. Reinhart, 1996. "Inflows of Capital to Developing Countries in the 1990s," Journal of Economic Perspectives, American Economic Association, vol. 10(2), pages 123-139, Spring.
    3. Jondeau, Eric & Rockinger, Michael, 2003. "Testing for differences in the tails of stock-market returns," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 559-581, December.
    4. Wang, Gang-Jin & Xie, Chi & Jiang, Zhi-Qiang & Stanley, H. Eugene, 2016. "Extreme risk spillover effects in world gold markets and the global financial crisis," International Review of Economics & Finance, Elsevier, vol. 46(C), pages 55-77.
    5. King, Mervyn A & Wadhwani, Sushil, 1990. "Transmission of Volatility between Stock Markets," The Review of Financial Studies, Society for Financial Studies, vol. 3(1), pages 5-33.
    6. Xu, Xiaoqing Eleanor & Fung, Hung-Gay, 2005. "Cross-market linkages between U.S. and Japanese precious metals futures trading," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 15(2), pages 107-124, April.
    7. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    8. Karolyi, G Andrew & Stulz, Rene M, 1996. "Why Do Markets Move Together? An Investigation of U.S.-Japan Stock Return Comovements," Journal of Finance, American Finance Association, vol. 51(3), pages 951-986, July.
    9. Anonymous, 2014. "Introduction to the Issue," Journal of Wine Economics, Cambridge University Press, vol. 9(2), pages 109-110, August.
    10. Li, Xiuming & Sun, Mei & Gao, Cuixia & He, Huizi, 2019. "The spillover effects between natural gas and crude oil markets: The correlation network analysis based on multi-scale approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 306-324.
    11. Jeon, Bang Nam & Chiang, Thomas C., 1991. "A system of stock prices in world stock exchanges: Common stochastic trends for 1975-1990," Journal of Economics and Business, Elsevier, vol. 43(4), pages 329-338, November.
    12. Hasan, Rashid & Mohammad, Salim M., 2015. "Multifractal analysis of Asian markets during 2007–2008 financial crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 746-761.
    13. Anonymous, 2014. "Introduction to the Issue," Journal of Wine Economics, Cambridge University Press, vol. 9(1), pages 1-2, May.
    14. John Beirne & Guglielmo Maria Caporale & Marianne Schulze-Ghattas & Nicola Spagnolo, 2013. "Volatility Spillovers and Contagion from Mature to Emerging Stock Markets," Review of International Economics, Wiley Blackwell, vol. 21(5), pages 1060-1075, November.
    15. Andrew J. Patton, 2006. "Estimation of multivariate models for time series of possibly different lengths," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(2), pages 147-173, March.
    16. Guodong Li & Yang Li & Chih-Ling Tsai, 2015. "Quantile Correlations and Quantile Autoregressive Modeling," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 246-261, March.
    17. Gurdip Bakshi & Nikunj Kapadia & Dilip Madan, 2003. "Stock Return Characteristics, Skew Laws, and the Differential Pricing of Individual Equity Options," The Review of Financial Studies, Society for Financial Studies, vol. 16(1), pages 101-143.
    18. François Benhmad, 2013. "Bull or Bear markets," Post-Print hal-03062493, HAL.
    19. Hilliard, Jimmy E, 1979. "The Relationship between Equity Indices on World Exchanges," Journal of Finance, American Finance Association, vol. 34(1), pages 103-114, March.
    20. Nikoloulopoulos, Aristidis K. & Joe, Harry & Li, Haijun, 2012. "Vine copulas with asymmetric tail dependence and applications to financial return data," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3659-3673.
    21. Barclay, Michael J & Litzenberger, Robert H & Warner, Jerold B, 1990. "Private Information, Trading Volume, and Stock-Return Variances," The Review of Financial Studies, Society for Financial Studies, vol. 3(2), pages 233-253.
    22. Benhmad, François, 2013. "Bull or bear markets: A wavelet dynamic correlation perspective," Economic Modelling, Elsevier, vol. 32(C), pages 576-591.
    23. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    24. Kim, Hyun-Seok & Min, Hong-Ghi & McDonald, Judith A., 2016. "Returns, correlations, and volatilities in equity markets: Evidence from six OECD countries during the US financial crisis," Economic Modelling, Elsevier, vol. 59(C), pages 9-22.
    25. Angelos Kanas & Georgios P. Kouretas, 2001. "Volatility Spillovers Between The Black Market And Official Market For Foreign Currency In Greece," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 24(3), pages 443-461, September.
    26. Angelos Kanas & Georgios P. Kouretas, 2001. "Volatility Spillovers Between The Black Market And Official Market For Foreign Currency In Greece," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 24(3), pages 443-461, September.
    27. Bekaert, Geert & Mehl, Arnaud, 2019. "On the global financial market integration “swoosh” and the trilemma," Journal of International Money and Finance, Elsevier, vol. 94(C), pages 227-245.
    28. Ozdemir, Zeynel Abidin & Olgun, Hasan & Saracoglu, Bedriye, 2009. "Dynamic linkages between the center and periphery in international stock markets," Research in International Business and Finance, Elsevier, vol. 23(1), pages 46-53, January.
    29. MacDonald, Ronald & Sogiakas, Vasilios & Tsopanakis, Andreas, 2018. "Volatility co-movements and spillover effects within the Eurozone economies: A multivariate GARCH approach using the financial stress index," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 52(C), pages 17-36.
    30. Daeyup Lee & Hail Park, 2019. "Measuring Global Financial Linkages: A Network Entropy Approach," Sustainability, MDPI, vol. 11(17), pages 1-10, August.
    31. Ning, Cathy, 2010. "Dependence structure between the equity market and the foreign exchange market-A copula approach," Journal of International Money and Finance, Elsevier, vol. 29(5), pages 743-759, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pasquale Dolce & Cristina Davino & Domenico Vistocco, 2022. "Quantile composite-based path modeling: algorithms, properties and applications," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(4), pages 909-949, December.
    2. Alqaralleh, Huthaifa & Canepa, Alessandra, 2022. "The role of precious metals in portfolio diversification during the Covid19 pandemic: A wavelet-based quantile approach," Resources Policy, Elsevier, vol. 75(C).
    3. Tiwari, Aviral Kumar & Adewuyi, Adeolu O. & Adeleke, Musefiu Adebowale & Abakah, Emmanuel Joel Aikins, 2023. "A time-varying Granger causality analysis between water stock and green stocks using novel approaches," Energy Economics, Elsevier, vol. 126(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Campbell, Rachel A.J. & Forbes, Catherine S. & Koedijk, Kees G. & Kofman, Paul, 2008. "Increasing correlations or just fat tails?," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 287-309, March.
    2. Lien, Donald & Lee, Geul & Yang, Li & Zhang, Yuyin, 2018. "Volatility spillovers among the U.S. and Asian stock markets: A comparison between the periods of Asian currency crisis and subprime credit crisis," The North American Journal of Economics and Finance, Elsevier, vol. 46(C), pages 187-201.
    3. Alqaralleh, Huthaifa & Canepa, Alessandra & Chini, Zanetti, 2021. "Financial Contagion During the Covid-19 Pandemic: A Wavelet-Copula-GARCH Approach," Department of Economics and Statistics Cognetti de Martiis. Working Papers 202110, University of Turin.
    4. Ojea-Ferreiro, Javier & Reboredo, Juan C., 2022. "Exchange rates and the global transmission of equity market shocks," Economic Modelling, Elsevier, vol. 114(C).
    5. Han, Xuyuan & Liu, Zhenya & Wang, Shixuan, 2022. "An R-vine copula analysis of non-ferrous metal futures with application in Value-at-Risk forecasting," Journal of Commodity Markets, Elsevier, vol. 25(C).
    6. Sohel Azad, A.S.M. & Batten, Jonathan A. & Fang, Victor & Wickramanayake, Jayasinghe, 2015. "International swap market contagion and volatility," Economic Modelling, Elsevier, vol. 47(C), pages 355-371.
    7. Alqaralleh, Huthaifa & Canepa, Alessandra, 2022. "The role of precious metals in portfolio diversification during the Covid19 pandemic: A wavelet-based quantile approach," Resources Policy, Elsevier, vol. 75(C).
    8. Martín-Barragán, Belén & Ramos, Sofia B. & Veiga, Helena, 2015. "Correlations between oil and stock markets: A wavelet-based approach," Economic Modelling, Elsevier, vol. 50(C), pages 212-227.
    9. Ding, Liang & Huang, Yirong & Pu, Xiaoling, 2014. "Volatility linkage across global equity markets," Global Finance Journal, Elsevier, vol. 25(2), pages 71-89.
    10. Ahmed, Abdullahi D. & Huo, Rui, 2019. "Impacts of China's crash on Asia-Pacific financial integration: Volatility interdependence, information transmission and market co-movement," Economic Modelling, Elsevier, vol. 79(C), pages 28-46.
    11. Anubha Goel & Aparna Mehra, 2019. "Analyzing Contagion Effect in Markets During Financial Crisis Using Stochastic Autoregressive Canonical Vine Model," Computational Economics, Springer;Society for Computational Economics, vol. 53(3), pages 921-950, March.
    12. Hartwell, Christopher A., 2014. "The impact of institutional volatility on financial volatility in transition economies : a GARCH family approach," BOFIT Discussion Papers 6/2014, Bank of Finland, Institute for Economies in Transition.
    13. Torben G. Andersen & Tim Bollerslev & Peter Christoffersen & Francis X. Diebold, 2007. "Practical Volatility and Correlation Modeling for Financial Market Risk Management," NBER Chapters, in: The Risks of Financial Institutions, pages 513-544, National Bureau of Economic Research, Inc.
    14. Eleni Constantinou & Robert Georgiades & Avo Kazandjian & George Kouretas, 2005. "Mean and variance causality between the Cyprus Stock Exchange and major equity markets," Working Papers 0501, University of Crete, Department of Economics.
    15. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    16. Goetzmann, William N. & Ivković, Zoran & Rouwenhorst, K. Geert, 2001. "Day Trading International Mutual Funds: Evidence and Policy Solutions," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 36(3), pages 287-309, September.
    17. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    18. repec:mje:mjejnl:v:12:y:2017:i:3:p:161-174 is not listed on IDEAS
    19. Raza, Hamid & Wu, Weiou, 2018. "Quantile dependence between the stock, bond and foreign exchange markets – Evidence from the UK," The Quarterly Review of Economics and Finance, Elsevier, vol. 69(C), pages 286-296.
    20. Reboredo, Juan C. & Ugolini, Andrea, 2018. "The impact of energy prices on clean energy stock prices. A multivariate quantile dependence approach," Energy Economics, Elsevier, vol. 76(C), pages 136-152.
    21. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:12:p:4908-:d:372235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.