IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v524y2019icp306-324.html
   My bibliography  Save this article

The spillover effects between natural gas and crude oil markets: The correlation network analysis based on multi-scale approach

Author

Listed:
  • Li, Xiuming
  • Sun, Mei
  • Gao, Cuixia
  • He, Huizi

Abstract

This paper proposes a new compound model to investigate the dynamic linkage mechanism between the natural gas and crude oil markets from the multi-scale perspective. In the proposed model, two main steps are involved: multi-scale analysis and network research. Based on the bivariate empirical mode decomposition (BEMD) and Fine-to-Coarse algorithm, the multi-scale analysis ensures the relationship between price fluctuations can be studied under three different time-scales, which corresponding to market disequilibrium, significant events, and long term trend. By integrating the grey correlation degree and Coarse-Gaining algorithm, the network research reveals the dynamic spillover effects of the two markets at different time-scales. To capture the different linked characteristic in different periods, the sample data of Henry Hub and WTI spot prices from 1997 to 2017 is divided into three periods. We transfer the daily correlations between the price fluctuations with specific time-scale into the correlation patterns and establish the network based on their transmission relations. The crucial correlation patterns and the significant transmission relations are revealed by some network indicators. And the proposed approach in this paper can be applied to other field of research.

Suggested Citation

  • Li, Xiuming & Sun, Mei & Gao, Cuixia & He, Huizi, 2019. "The spillover effects between natural gas and crude oil markets: The correlation network analysis based on multi-scale approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 306-324.
  • Handle: RePEc:eee:phsmap:v:524:y:2019:i:c:p:306-324
    DOI: 10.1016/j.physa.2019.04.141
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119305072
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.04.141?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Batten, Jonathan A. & Ciner, Cetin & Lucey, Brian M., 2017. "The dynamic linkages between crude oil and natural gas markets," Energy Economics, Elsevier, vol. 62(C), pages 155-170.
    2. Zhang, Xun & Lai, K.K. & Wang, Shou-Yang, 2008. "A new approach for crude oil price analysis based on Empirical Mode Decomposition," Energy Economics, Elsevier, vol. 30(3), pages 905-918, May.
    3. Ji, Qiang & Zhang, Hai-Ying & Geng, Jiang-Bo, 2018. "What drives natural gas prices in the United States? – A directed acyclic graph approach," Energy Economics, Elsevier, vol. 69(C), pages 79-88.
    4. Jiang, Meihui & An, Haizhong & Jia, Xiaoliang & Sun, Xiaoqi, 2017. "The influence of global benchmark oil prices on the regional oil spot market in multi-period evolution," Energy, Elsevier, vol. 118(C), pages 742-752.
    5. repec:ipg:wpaper:2014-569 is not listed on IDEAS
    6. He, Kaijian & Yu, Lean & Lai, Kin Keung, 2012. "Crude oil price analysis and forecasting using wavelet decomposed ensemble model," Energy, Elsevier, vol. 46(1), pages 564-574.
    7. Atil, Ahmed & Lahiani, Amine & Nguyen, Duc Khuong, 2014. "Asymmetric and nonlinear pass-through of crude oil prices to gasoline and natural gas prices," Energy Policy, Elsevier, vol. 65(C), pages 567-573.
    8. Jadidzadeh, Ali & Serletis, Apostolos, 2017. "How does the U.S. natural gas market react to demand and supply shocks in the crude oil market?," Energy Economics, Elsevier, vol. 63(C), pages 66-74.
    9. Hu, Jianqiang & Yu, Jie & Cao, Jinde & Ni, Ming & Yu, Wenjie, 2014. "Topological interactive analysis of power system and its communication module: A complex network approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 99-111.
    10. Aloui, Riadh & Aïssa, Mohamed Safouane Ben & Hammoudeh, Shawkat & Nguyen, Duc Khuong, 2014. "Dependence and extreme dependence of crude oil and natural gas prices with applications to risk management," Energy Economics, Elsevier, vol. 42(C), pages 332-342.
    11. Wang, Yi & Cao, Jinde & Alofi, Abdulaziz & AL-Mazrooei, Abdullah & Elaiw, Ahmed, 2015. "Revisiting node-based SIR models in complex networks with degree correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 75-88.
    12. An, Haizhong & Gao, Xiangyun & Fang, Wei & Ding, Yinghui & Zhong, Weiqiong, 2014. "Research on patterns in the fluctuation of the co-movement between crude oil futures and spot prices: A complex network approach," Applied Energy, Elsevier, vol. 136(C), pages 1067-1075.
    13. Li, Huajiao & An, Haizhong & Liu, Xueyong & Gao, Xiangyun & Fang, Wei & An, Feng, 2016. "Price fluctuation in the energy stock market based on fluctuation and co-fluctuation matrix transmission networks," Energy, Elsevier, vol. 117(P1), pages 73-83.
    14. Wakamatsu, Hiroki & Aruga, Kentaka, 2013. "The impact of the shale gas revolution on the U.S. and Japanese natural gas markets," Energy Policy, Elsevier, vol. 62(C), pages 1002-1009.
    15. Yu, Lean & Li, Jingjing & Tang, Ling & Wang, Shuai, 2015. "Linear and nonlinear Granger causality investigation between carbon market and crude oil market: A multi-scale approach," Energy Economics, Elsevier, vol. 51(C), pages 300-311.
    16. Jia, Xiaoliang & An, Haizhong & Sun, Xiaoqi & Huang, Xuan & Gao, Xiangyun, 2016. "Finding the multipath propagation of multivariable crude oil prices using a wavelet-based network approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 331-344.
    17. Stephen P. A. Brown & Mine K. Yucel, 2008. "What Drives Natural Gas Prices?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 45-60.
    18. Geng, Jiang-Bo & Ji, Qiang & Fan, Ying, 2016. "The impact of the North American shale gas revolution on regional natural gas markets: Evidence from the regime-switching model," Energy Policy, Elsevier, vol. 96(C), pages 167-178.
    19. Nick, Sebastian & Thoenes, Stefan, 2014. "What drives natural gas prices? — A structural VAR approach," Energy Economics, Elsevier, vol. 45(C), pages 517-527.
    20. Marcel Fratzscher & Daniel Schneider & Ine Van Robays, 2013. "Oil Prices, Exchange Rates and Asset Prices," CESifo Working Paper Series 4264, CESifo.
    21. Westgaard, Sjur & Estenstad, Maria & Seim, Maria & Frydenberg, Stein, 2011. "Co-integration of ICE Gas oil and Crude oil futures," Energy Economics, Elsevier, vol. 33(2), pages 311-320, March.
    22. Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2008. "Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm," Energy Economics, Elsevier, vol. 30(5), pages 2623-2635, September.
    23. Geng, Jiang-Bo & Ji, Qiang & Fan, Ying, 2016. "The behaviour mechanism analysis of regional natural gas prices: A multi-scale perspective," Energy, Elsevier, vol. 101(C), pages 266-277.
    24. Tonn, Victor Lux & Li, H.C. & McCarthy, Joseph, 2010. "Wavelet domain correlation between the futures prices of natural gas and oil," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(4), pages 408-414, November.
    25. Jia, Xiaoliang & An, Haizhong & Fang, Wei & Sun, Xiaoqi & Huang, Xuan, 2015. "How do correlations of crude oil prices co-move? A grey correlation-based wavelet perspective," Energy Economics, Elsevier, vol. 49(C), pages 588-598.
    26. Zhang, Dayong & Ji, Qiang, 2018. "Further evidence on the debate of oil-gas price decoupling: A long memory approach," Energy Policy, Elsevier, vol. 113(C), pages 68-75.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali Jadidzadeh & Mobin Mirzababaei & Apostolos Serletis, 2022. "Oil Prices and the Hydrocarbon Markets: A Review," Energies, MDPI, vol. 15(17), pages 1-9, August.
    2. Štefan Bojnec & Alan Križaj, 2021. "Electricity Markets during the Liberalization: The Case of a European Union Country," Energies, MDPI, vol. 14(14), pages 1-21, July.
    3. Li, Jinchao & Wu, Qianqian & Tian, Yu & Fan, Liguo, 2021. "Monthly Henry Hub natural gas spot prices forecasting using variational mode decomposition and deep belief network," Energy, Elsevier, vol. 227(C).
    4. Mensi, Walid & Rehman, Mobeen Ur & Vo, Xuan Vinh, 2021. "Dynamic frequency relationships and volatility spillovers in natural gas, crude oil, gas oil, gasoline, and heating oil markets: Implications for portfolio management," Resources Policy, Elsevier, vol. 73(C).
    5. Bilal Ahmed Memon & Rabia Tahir, 2021. "Examining Network Structures and Dynamics of World Energy Companies in Stock Markets: A Complex Network Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 11(4), pages 329-344.
    6. Chao Xu & Jinchuan Ke & Xiaojun Zhao & Xiaofang Zhao, 2020. "Multiscale Quantile Correlation Coefficient: Measuring Tail Dependence of Financial Time Series," Sustainability, MDPI, vol. 12(12), pages 1-24, June.
    7. He, Huizi & Sun, Mei & Gao, Cuixia & Li, Xiuming, 2021. "Detecting lag linkage effect between economic policy uncertainty and crude oil price: A multi-scale perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    8. Hoque, Mohammad Enamul & Soo-Wah, Low & Billah, Mabruk, 2023. "Time-frequency connectedness and spillover among carbon, climate, and energy futures: Determinants and portfolio risk management implications," Energy Economics, Elsevier, vol. 127(PB).
    9. Xu, Chao & Zhao, Xiaojun & Wang, Yanwen, 2022. "Causal decomposition on multiple time scales: Evidence from stock price-volume time series," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ji, Qiang & Geng, Jiang-Bo & Tiwari, Aviral Kumar, 2018. "Information spillovers and connectedness networks in the oil and gas markets," Energy Economics, Elsevier, vol. 75(C), pages 71-84.
    2. Geng, Jiang-Bo & Ji, Qiang & Fan, Ying, 2017. "The relationship between regional natural gas markets and crude oil markets from a multi-scale nonlinear Granger causality perspective," Energy Economics, Elsevier, vol. 67(C), pages 98-110.
    3. Wang, TianTian & Zhang, Dayong & Clive Broadstock, David, 2019. "Financialization, fundamentals, and the time-varying determinants of US natural gas prices," Energy Economics, Elsevier, vol. 80(C), pages 707-719.
    4. Zhang, Dayong & Ji, Qiang, 2018. "Further evidence on the debate of oil-gas price decoupling: A long memory approach," Energy Policy, Elsevier, vol. 113(C), pages 68-75.
    5. Hailemariam, Abebe & Smyth, Russell, 2019. "What drives volatility in natural gas prices?," Energy Economics, Elsevier, vol. 80(C), pages 731-742.
    6. Theodosios Perifanis & Athanasios Dagoumas, 2018. "Price and Volatility Spillovers Between the US Crude Oil and Natural Gas Wholesale Markets," Energies, MDPI, vol. 11(10), pages 1-25, October.
    7. Wei, Zhaohao & Chai, Jian & Dong, Jichang & Lu, Quanying, 2022. "Understanding the linkage-dependence structure between oil and gas markets: A new perspective," Energy, Elsevier, vol. 257(C).
    8. Michał Rubaszek & Karol Szafranek, 2022. "Have European natural gas prices decoupled from crude oil prices? Evidence from TVP-VAR analysis," KAE Working Papers 2022-078, Warsaw School of Economics, Collegium of Economic Analysis.
    9. Mensi, Walid & Rehman, Mobeen Ur & Vo, Xuan Vinh, 2021. "Dynamic frequency relationships and volatility spillovers in natural gas, crude oil, gas oil, gasoline, and heating oil markets: Implications for portfolio management," Resources Policy, Elsevier, vol. 73(C).
    10. Zied Ftiti & Kais Tissaoui & Sahbi Boubaker, 2022. "On the relationship between oil and gas markets: a new forecasting framework based on a machine learning approach," Annals of Operations Research, Springer, vol. 313(2), pages 915-943, June.
    11. Scarcioffolo, Alexandre R. & Etienne, Xiaoli, 2021. "Testing directional predictability between energy prices: A quantile-based analysis," Resources Policy, Elsevier, vol. 74(C).
    12. Wang, Tiantian & Qu, Wan & Zhang, Dayong & Ji, Qiang & Wu, Fei, 2022. "Time-varying determinants of China's liquefied natural gas import price: A dynamic model averaging approach," Energy, Elsevier, vol. 259(C).
    13. Yanting Chen & Peter R. Hartley & Yihui Lan, 2023. "Temperature, storage, and natural gas futures prices," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(4), pages 549-575, April.
    14. Ji, Qiang & Zhang, Hai-Ying & Geng, Jiang-Bo, 2018. "What drives natural gas prices in the United States? – A directed acyclic graph approach," Energy Economics, Elsevier, vol. 69(C), pages 79-88.
    15. Lovcha, Yuliya & Perez-Laborda, Alejandro, 2020. "Dynamic frequency connectedness between oil and natural gas volatilities," Economic Modelling, Elsevier, vol. 84(C), pages 181-189.
    16. Cuilin Li & Ya-Juan Du & Qiang Ji & Jiang-bo Geng, 2019. "Multiscale Market Integration and Nonlinear Granger Causality between Natural Gas Futures and Physical Markets," Sustainability, MDPI, vol. 11(19), pages 1-23, October.
    17. Rubaszek, Michał & Uddin, Gazi Salah, 2020. "The role of underground storage in the dynamics of the US natural gas market: A threshold model analysis," Energy Economics, Elsevier, vol. 87(C).
    18. Kumar, Suresh & Choudhary, Sangita & Singh, Gurcharan & Singhal, Shelly, 2021. "Crude oil, gold, natural gas, exchange rate and indian stock market: Evidence from the asymmetric nonlinear ARDL model," Resources Policy, Elsevier, vol. 73(C).
    19. Zhang, Dayong & Shi, Min & Shi, Xunpeng, 2018. "Oil indexation, market fundamentals, and natural gas prices: An investigation of the Asian premium in natural gas trade," Energy Economics, Elsevier, vol. 69(C), pages 33-41.
    20. Miao, Xiaoyu & Wang, Qunwei & Dai, Xingyu, 2022. "Is oil-gas price decoupling happening in China? A multi-scale quantile-on-quantile approach," International Review of Economics & Finance, Elsevier, vol. 77(C), pages 450-470.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:524:y:2019:i:c:p:306-324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.