IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i10p4000-d357862.html
   My bibliography  Save this article

Measurement of Systemic Risk in Global Financial Markets and Its Application in Forecasting Trading Decisions

Author

Listed:
  • Jianxu Liu

    () (Faculty of Economics, Shandong University of Finance and Economics, Jinan 250000, China
    Faculty of Economics, Chiang Mai University, Chiang Mai 50200, Thailand
    These authors contributed equally to this work.)

  • Quanrui Song

    () (Faculty of Economics, Chiang Mai University, Chiang Mai 50200, Thailand
    These authors contributed equally to this work.)

  • Yang Qi

    () (Faculty of Economics, Shandong University of Finance and Economics, Jinan 250000, China
    These authors contributed equally to this work.)

  • Sanzidur Rahman

    () (Faculty of Economics, Shandong University of Finance and Economics, Jinan 250000, China
    Plymouth Business School, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
    These authors contributed equally to this work.)

  • Songsak Sriboonchitta

    () (Faculty of Economics, Chiang Mai University, Chiang Mai 50200, Thailand
    These authors contributed equally to this work.)

Abstract

The global financial crisis in 2008 spurred the need to study systemic risk in financial markets, which is of interest to both academics and practitioners alike. We first aimed to measure and forecast systemic risk in global financial markets and then to construct a trade decision model for investors and financial institutions to assist them in forecasting risk and potential returns based on the results of the analysis of systemic risk. The factor copula-generalized autoregressive conditional heteroskedasticity (GARCH) models and component expected shortfall (CES) were combined for the first time in this study to measure systemic risk and the contribution of individual countries to global systemic risk in global financial markets. The use of factor copula-based models enabled the estimation of joint models in stages, thereby considerably reducing computational burden. A high-dimensional dataset of daily stock market indices of 43 countries covering the period 2003 to 2019 was used to represent global financial markets. The CES portfolios developed in this study, based on the forecasting results of systemic risk, not only allow spreading of systemic risk but may also enable investors and financial institutions to make profits. The main policy implication of our study is that forecasting systemic risk of global financial markets and developing portfolios can provide valuable insights for financial institutions and policy makers to diversify portfolios and spread risk for future investments and trade.

Suggested Citation

  • Jianxu Liu & Quanrui Song & Yang Qi & Sanzidur Rahman & Songsak Sriboonchitta, 2020. "Measurement of Systemic Risk in Global Financial Markets and Its Application in Forecasting Trading Decisions," Sustainability, MDPI, Open Access Journal, vol. 12(10), pages 1-15, May.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:10:p:4000-:d:357862
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/10/4000/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/10/4000/
    Download Restriction: no

    References listed on IDEAS

    as
    1. Tachibana, Minoru, 2018. "Relationship between stock and currency markets conditional on the US stock returns: A vine copula approach," Journal of Multinational Financial Management, Elsevier, vol. 46(C), pages 75-106.
    2. Sylvain Benoit & Gilbert Colletaz & Christophe Hurlin & Christophe Pérignon, 2013. "A Theoretical and Empirical Comparison of Systemic Risk Measures," Working Papers halshs-00746272, HAL.
    3. David E. Allen & Michael McAleer & Abhay K. Singh, 2017. "Risk Measurement and Risk Modelling Using Applications of Vine Copulas," Sustainability, MDPI, Open Access Journal, vol. 9(10), pages 1-34, September.
    4. Tiwari, Aviral Kumar & Trabelsi, Nader & Alqahtani, Faisal & Raheem, Ibrahim D., 2020. "Systemic risk spillovers between crude oil and stock index returns of G7 economies: Conditional value-at-risk and marginal expected shortfall approaches," Energy Economics, Elsevier, vol. 86(C).
    5. Pourkhanali, Armin & Kim, Jong-Min & Tafakori, Laleh & Fard, Farzad Alavi, 2016. "Measuring systemic risk using vine-copula," Economic Modelling, Elsevier, vol. 53(C), pages 63-74.
    6. Banulescu, Georgiana-Denisa & Dumitrescu, Elena-Ivona, 2015. "Which are the SIFIs? A Component Expected Shortfall approach to systemic risk," Journal of Banking & Finance, Elsevier, vol. 50(C), pages 575-588.
    7. Dong Hwan Oh & Andrew J. Patton, 2018. "Time-Varying Systemic Risk: Evidence From a Dynamic Copula Model of CDS Spreads," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(2), pages 181-195, April.
    8. Calabrese, Raffaella & Osmetti, Silvia Angela, 2019. "A new approach to measure systemic risk: A bivariate copula model for dependent censored data," European Journal of Operational Research, Elsevier, vol. 279(3), pages 1053-1064.
    9. Wu, Fei, 2019. "Sectoral contributions to systemic risk in the Chinese stock market," Finance Research Letters, Elsevier, vol. 31(C).
    10. Silvapulle, Param & Smyth, Russell & Zhang, Xibin & Fenech, Jean-Pierre, 2017. "Nonparametric panel data model for crude oil and stock market prices in net oil importing countries," Energy Economics, Elsevier, vol. 67(C), pages 255-267.
    11. Reboredo, Juan C., 2015. "Is there dependence and systemic risk between oil and renewable energy stock prices?," Energy Economics, Elsevier, vol. 48(C), pages 32-45.
    12. Sedunov, John, 2016. "What is the systemic risk exposure of financial institutions?," Journal of Financial Stability, Elsevier, vol. 24(C), pages 71-87.
    13. Gong, Chen & Tang, Pan & Wang, Yutong, 2019. "Measuring the network connectedness of global stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    14. B. Peters & Jon Pierre & Tiina Randma-Liiv, 2011. "Global Financial Crisis, Public Administration and Governance: Do New Problems Require New Solutions?," Public Organization Review, Springer, vol. 11(1), pages 13-27, March.
    15. Jianxu Liu & Mengjiao Wang & Songsak Sriboonchitta, 2019. "Examining the Interdependence between the Exchange Rates of China and ASEAN Countries: A Canonical Vine Copula Approach," Sustainability, MDPI, Open Access Journal, vol. 11(19), pages 1-20, October.
    16. Christensen, Bent Jesper & Nielsen, Morten Ørregaard & Zhu, Jie, 2015. "The impact of financial crises on the risk–return tradeoff and the leverage effect," Economic Modelling, Elsevier, vol. 49(C), pages 407-418.
    17. Gregory H. Bauer & Eleonora Granziera, 2017. "Monetary Policy, Private Debt, and Financial Stability Risks," International Journal of Central Banking, International Journal of Central Banking, vol. 13(3), pages 337-373, September.
    18. Qin, Xiao & Zhou, Chunyang, 2019. "Financial structure and determinants of systemic risk contribution," Pacific-Basin Finance Journal, Elsevier, vol. 57(C).
    19. Yun, Jaeho & Moon, Hyejung, 2014. "Measuring systemic risk in the Korean banking sector via dynamic conditional correlation models," Pacific-Basin Finance Journal, Elsevier, vol. 27(C), pages 94-114.
    20. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    21. Shahzad, Syed Jawad Hussain & Arreola-Hernandez, Jose & Bekiros, Stelios & Shahbaz, Muhammad & Kayani, Ghulam Mujtaba, 2018. "A systemic risk analysis of Islamic equity markets using vine copula and delta CoVaR modeling," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 56(C), pages 104-127.
    22. Matesanz, David & Ortega, Guillermo J., 2015. "Sovereign public debt crisis in Europe. A network analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 756-766.
    23. Reboredo, Juan C. & Ugolini, Andrea, 2015. "Systemic risk in European sovereign debt markets: A CoVaR-copula approach," Journal of International Money and Finance, Elsevier, vol. 51(C), pages 214-244.
    24. X. Qin & X. Zhu, 2014. "Too non-traditional to fail? Determinants of systemic risk for BRICs banks," Applied Economics Letters, Taylor & Francis Journals, vol. 21(4), pages 261-264, March.
    25. Wu, Chih-Chiang & Chung, Huimin & Chang, Yu-Hsien, 2012. "The economic value of co-movement between oil price and exchange rate using copula-based GARCH models," Energy Economics, Elsevier, vol. 34(1), pages 270-282.
    26. Bartram, Sohnke M. & Brown, Gregory W. & Hund, John E., 2007. "Estimating systemic risk in the international financial system," Journal of Financial Economics, Elsevier, vol. 86(3), pages 835-869, December.
    27. Reboredo, Juan C. & Rivera-Castro, Miguel A. & Ugolini, Andrea, 2016. "Downside and upside risk spillovers between exchange rates and stock prices," Journal of Banking & Finance, Elsevier, vol. 62(C), pages 76-96.
    28. Arnold, Patricia J., 2009. "Global financial crisis: The challenge to accounting research," Accounting, Organizations and Society, Elsevier, vol. 34(6-7), pages 803-809, August.
    29. Lu Yang & Jason Z. Ma & Shigeyuki Hamori, 2018. "Dependence Structures and Systemic Risk of Government Securities Markets in Central and Eastern Europe: A CoVaR-Copula Approach," Sustainability, MDPI, Open Access Journal, vol. 10(2), pages 1-23, January.
    30. Reboredo, Juan C. & Ugolini, Andrea, 2015. "A vine-copula conditional value-at-risk approach to systemic sovereign debt risk for the financial sector," The North American Journal of Economics and Finance, Elsevier, vol. 32(C), pages 98-123.
    31. Warshaw, Evan, 2019. "Extreme dependence and risk spillovers across north american equity markets," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 237-251.
    32. Du, Limin & He, Yanan, 2015. "Extreme risk spillovers between crude oil and stock markets," Energy Economics, Elsevier, vol. 51(C), pages 455-465.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    stock markets; factor copula; dependence; forecasting risk; financial crisis;

    JEL classification:

    • Q - Agricultural and Natural Resource Economics; Environmental and Ecological Economics
    • Q0 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General
    • Q2 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation
    • Q3 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation
    • Q5 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:10:p:4000-:d:357862. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (XML Conversion Team). General contact details of provider: https://www.mdpi.com/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.