IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i3p764-d135699.html
   My bibliography  Save this article

Sustainable Development of China’s Industrial Economy: An Empirical Study of the Period 2001–2011

Author

Listed:
  • Huijun Li

    (School of Economics, Huazhong University of Science and Technology, Wuhan 430074, China
    Division of Arts, Humanities, & Social Sciences, Victoria College, Victoria, TX 77901, USA)

  • Jianhua Zhang

    (School of Economics, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Edward Osei

    (Department of Agricultural and Consumer Sciences, Tarleton State University, Stephenville, TX 76401, USA)

  • Mark Yu

    (Department of Agricultural and Consumer Sciences, Tarleton State University, Stephenville, TX 76401, USA)

Abstract

In this paper, we investigate the implications of continued industrial economic growth on environmental pollution in China in order to inform strategic policies to achieve sustainable development of the industrial sector. We calculate green total factor productivity (TFP) for each industrial sector by estimating the Global Malmquist-Luenberger (GML) index using a Slacks-based Measure Directional Distance Function (SBM-DDF). We find that the green TFP increased at an average annual rate of approximately 6% over the 11-year period. A slightly greater portion of this growth is attributable to technological progress (57%) rather than technical efficiency (43%). To investigate the relationship between industrial economic growth and pollutant levels, we first adopt a hierarchical clustering procedure to group all industrial sectors into green-intensive, intermediate and extensive clusters based on the contribution of green TFP to industrial economic growth within respective industries. Based on an econometric estimation of the relationship between pollutant levels and industrial GDP per capita, we find clear evidence in favor of the Environmental Kuznets Curve (EKC) theory only with wastewater as the primary pollutant of interest and only with industrial sectors that are already relatively pollution intensive. We find no evidence in support of the EKC theory when sulfur dioxide or solid waste is the pollutant of major concern. In general, blindly accelerating industrial economic growth will likely worsen environmental quality, unless reasonable environmental policy interventions are implemented.

Suggested Citation

  • Huijun Li & Jianhua Zhang & Edward Osei & Mark Yu, 2018. "Sustainable Development of China’s Industrial Economy: An Empirical Study of the Period 2001–2011," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:3:p:764-:d:135699
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/3/764/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/3/764/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jalil, Abdul & Feridun, Mete, 2011. "The impact of growth, energy and financial development on the environment in China: A cointegration analysis," Energy Economics, Elsevier, vol. 33(2), pages 284-291, March.
    2. Grossman, G.M & Krueger, A.B., 1991. "Environmental Impacts of a North American Free Trade Agreement," Papers 158, Princeton, Woodrow Wilson School - Public and International Affairs.
    3. Dong-hyun Oh, 2010. "A global Malmquist-Luenberger productivity index," Journal of Productivity Analysis, Springer, vol. 34(3), pages 183-197, December.
    4. Zhou, P. & Ang, B.W., 2008. "Linear programming models for measuring economy-wide energy efficiency performance," Energy Policy, Elsevier, vol. 36(8), pages 2901-2906, August.
    5. Song, Tao & Zheng, Tingguo & Tong, Lianjun, 2008. "An empirical test of the environmental Kuznets curve in China: A panel cointegration approach," China Economic Review, Elsevier, vol. 19(3), pages 381-392, September.
    6. Li, Ke & Lin, Boqiang, 2015. "Measuring green productivity growth of Chinese industrial sectors during 1998–2011," China Economic Review, Elsevier, vol. 36(C), pages 279-295.
    7. Du, Limin & Wei, Chu & Cai, Shenghua, 2012. "Economic development and carbon dioxide emissions in China: Provincial panel data analysis," China Economic Review, Elsevier, vol. 23(2), pages 371-384.
    8. Kumar, Surender, 2006. "Environmentally sensitive productivity growth: A global analysis using Malmquist-Luenberger index," Ecological Economics, Elsevier, vol. 56(2), pages 280-293, February.
    9. Onafowora, Olugbenga A. & Owoye, Oluwole, 2014. "Bounds testing approach to analysis of the environment Kuznets curve hypothesis," Energy Economics, Elsevier, vol. 44(C), pages 47-62.
    10. He, Jie & Richard, Patrick, 2010. "Environmental Kuznets curve for CO2 in Canada," Ecological Economics, Elsevier, vol. 69(5), pages 1083-1093, March.
    11. Fukuyama, Hirofumi & Weber, William L., 2009. "A directional slacks-based measure of technical inefficiency," Socio-Economic Planning Sciences, Elsevier, vol. 43(4), pages 274-287, December.
    12. Jayanthakumaran, Kankesu & Verma, Reetu & Liu, Ying, 2012. "CO2 emissions, energy consumption, trade and income: A comparative analysis of China and India," Energy Policy, Elsevier, vol. 42(C), pages 450-460.
    13. Byung M. Jeon & Robin C. Sickles, 2004. "The role of environmental factors in growth accounting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 19(5), pages 567-591.
    14. Gale Boyd & George Tolley & Joseph Pang, 2002. "Plant Level Productivity, Efficiency, and Environmental Performance of the Container Glass Industry," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 23(1), pages 29-43, September.
    15. Pastor, Jesus T. & Lovell, C.A. Knox, 2005. "A global Malmquist productivity index," Economics Letters, Elsevier, vol. 88(2), pages 266-271, August.
    16. Picazo-Tadeo, Andres J. & Reig-Martinez, Ernest & Hernandez-Sancho, Francesc, 2005. "Directional distance functions and environmental regulation," Resource and Energy Economics, Elsevier, vol. 27(2), pages 131-142, June.
    17. Zheng, Shiming & Yi, Hongtao & Li, Hui, 2015. "The impacts of provincial energy and environmental policies on air pollution control in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 386-394.
    18. Watanabe, Michio & Tanaka, Katsuya, 2007. "Efficiency analysis of Chinese industry: A directional distance function approach," Energy Policy, Elsevier, vol. 35(12), pages 6323-6331, December.
    19. Emrouznejad, Ali & Yang, Guo-liang, 2016. "CO2 emissions reduction of Chinese light manufacturing industries: A novel RAM-based global Malmquist–Luenberger productivity index," Energy Policy, Elsevier, vol. 96(C), pages 397-410.
    20. Zhang, Chunhong & Liu, Haiying & Bressers, Hans Th.A. & Buchanan, Karen S., 2011. "Productivity growth and environmental regulations - accounting for undesirable outputs: Analysis of China's thirty provincial regions using the Malmquist–Luenberger index," Ecological Economics, Elsevier, vol. 70(12), pages 2369-2379.
    21. Harris, Richard D. F. & Tzavalis, Elias, 1999. "Inference for unit roots in dynamic panels where the time dimension is fixed," Journal of Econometrics, Elsevier, vol. 91(2), pages 201-226, August.
    22. Tone, Kaoru, 2002. "A slacks-based measure of super-efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 143(1), pages 32-41, November.
    23. Jalil, Abdul & Mahmud, Syed F., 2009. "Environment Kuznets curve for CO2 emissions: A cointegration analysis for China," Energy Policy, Elsevier, vol. 37(12), pages 5167-5172, December.
    24. Fare, Rolf & Grosskopf, Shawna & Pasurka, Carl Jr., 2007. "Pollution abatement activities and traditional productivity," Ecological Economics, Elsevier, vol. 62(3-4), pages 673-682, May.
    25. Wang, S.S. & Zhou, D.Q. & Zhou, P. & Wang, Q.W., 2011. "CO2 emissions, energy consumption and economic growth in China: A panel data analysis," Energy Policy, Elsevier, vol. 39(9), pages 4870-4875, September.
    26. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dan Li & Yulei Weng & Xiaocong Yang & Kai Zhao, 2019. "Self-Deprecation or Self-Sufficient? Discrimination and Income Aspirations in Urban Labour Market Sustainable Development," Sustainability, MDPI, vol. 11(22), pages 1-18, November.
    2. Muchen Luo & Yimin Wu, 2022. "Data-Driven Evaluation and Optimisation of Livelihood Improvement Efficiency," Sustainability, MDPI, vol. 14(13), pages 1-24, July.
    3. Han Bao & Tangwei Teng & Xianzhong Cao & Shengpeng Wang & Senlin Hu, 2022. "The Threshold Effect of Knowledge Diversity on Urban Green Innovation Efficiency Using the Yangtze River Delta Region as an Example," IJERPH, MDPI, vol. 19(17), pages 1-18, August.
    4. Caiming Wang & Jian Li, 2020. "The Evaluation and Promotion Path of Green Innovation Performance in Chinese Pollution-Intensive Industry," Sustainability, MDPI, vol. 12(10), pages 1-22, May.
    5. Xi Qin & Xiaoling Wang & Yusen Xu & Yawen Wei, 2019. "Exploring Driving Forces of Green Growth: Empirical Analysis on China’s Iron and Steel Industry," Sustainability, MDPI, vol. 11(4), pages 1-11, February.
    6. Gang Liu & Pengfei Shi & Feng Hai & Yi Zhang & Xingming Li, 2018. "Study on Measurement of Green Productivity of Tourism in the Yangtze River Economic Zone, China," Sustainability, MDPI, vol. 10(8), pages 1-17, August.
    7. Jiawei Wu & Yehua Dennis Wei & Qizhai Li & Feng Yuan, 2018. "Economic Transition and Changing Location of Manufacturing Industry in China: A Study of the Yangtze River Delta," Sustainability, MDPI, vol. 10(8), pages 1-28, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Shahbaz & Avik Sinha, 2019. "Environmental Kuznets curve for CO2emissions: a literature survey," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 46(1), pages 106-168, January.
    2. Tiba, Sofien & Omri, Anis, 2017. "Literature survey on the relationships between energy, environment and economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1129-1146.
    3. Sofien, Tiba & Omri, Anis, 2016. "Literature survey on the relationships between energy variables, environment and economic growth," MPRA Paper 82555, University Library of Munich, Germany, revised 14 Sep 2016.
    4. Shahbaz, Muhammad & Sinha, Avik, 2019. "Environmental Kuznets Curve for CO2 emission: A survey of empirical literature," MPRA Paper 100257, University Library of Munich, Germany, revised 2019.
    5. Shahbaz, Muhammad & Haouas, Ilham & Hoang, Thi Hong Van, 2019. "Economic growth and environmental degradation in Vietnam: Is the environmental Kuznets curve a complete picture?," Emerging Markets Review, Elsevier, vol. 38(C), pages 197-218.
    6. Pal, Debdatta & Mitra, Subrata Kumar, 2017. "The environmental Kuznets curve for carbon dioxide in India and China: Growth and pollution at crossroad," Journal of Policy Modeling, Elsevier, vol. 39(2), pages 371-385.
    7. Zhang, Qianxue & Liao, Hua & Hao, Yu, 2018. "Does one path fit all? An empirical study on the relationship between energy consumption and economic development for individual Chinese provinces," Energy, Elsevier, vol. 150(C), pages 527-543.
    8. Deshan Li & Rongwei Wu, 2018. "A Dynamic Analysis of Green Productivity Growth for Cities in Xinjiang," Sustainability, MDPI, vol. 10(2), pages 1-13, February.
    9. Guglielmo Maria Caporale & Gloria Claudio-Quiroga & Luis A. Gil-Alana, 2019. "CO2 Emissions and GDP: Evidence from China," CESifo Working Paper Series 7881, CESifo.
    10. Guglielmo Maria Caporale & Gloria Claudio-Quiroga & Luis A. Gil-Alana, 2021. "Analysing the relationship between CO2 emissions and GDP in China: a fractional integration and cointegration approach," Journal of Innovation and Entrepreneurship, Springer, vol. 10(1), pages 1-16, December.
    11. Chen, Shiyi & Golley, Jane, 2014. "‘Green’ productivity growth in China's industrial economy," Energy Economics, Elsevier, vol. 44(C), pages 89-98.
    12. Gozgor, Giray & Can, Muhlis, 2016. "Does Export Product Quality Matter for CO2 Emissions? Evidence from China," MPRA Paper 71873, University Library of Munich, Germany.
    13. Chaofan Chen & Qingxin Lan & Ming Gao & Yawen Sun, 2018. "Green Total Factor Productivity Growth and Its Determinants in China’s Industrial Economy," Sustainability, MDPI, vol. 10(4), pages 1-25, April.
    14. Sofien Tiba & Mohamed Frikha, 2020. "EKC and Macroeconomics Aspects of Well-being: a Critical Vision for a Sustainable Future," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 11(3), pages 1171-1197, September.
    15. Nilüfer Kaya Kanlı & Bige Küçükefe, 2023. "Is the environmental Kuznets curve hypothesis valid? A global analysis for carbon dioxide emissions," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(3), pages 2339-2367, March.
    16. Shahbaz, Muhammad & Mutascu, Mihai & Azim, Parvez, 2013. "Environmental Kuznets curve in Romania and the role of energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 165-173.
    17. Jin, Gang & Shen, Kunrong & Li, Jian, 2020. "Interjurisdiction political competition and green total factor productivity in China: An inverted-U relationship," China Economic Review, Elsevier, vol. 61(C).
    18. Al-Mulali, Usama & Saboori, Behnaz & Ozturk, Ilhan, 2015. "Investigating the environmental Kuznets curve hypothesis in Vietnam," Energy Policy, Elsevier, vol. 76(C), pages 123-131.
    19. Yongyi Cheng & Liheng Lu & Tianyuan Shao & Manhong Shen & Laiqun Jin, 2018. "Decomposition Analysis of Factors Affecting Changes in Industrial Wastewater Emission Intensity in China: Based on a SSBM-GMI Approach," IJERPH, MDPI, vol. 15(12), pages 1-23, December.
    20. Li, Tingting & Wang, Yong & Zhao, Dingtao, 2016. "Environmental Kuznets Curve in China: New evidence from dynamic panel analysis," Energy Policy, Elsevier, vol. 91(C), pages 138-147.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:3:p:764-:d:135699. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.