IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i10p1757-d937503.html
   My bibliography  Save this article

Evaluation Method of Composite Development Bus Terminal Using Multi-Source Data Processing

Author

Listed:
  • Tao Zhang

    (Enrollment and Employment Division, Henan College of Transportation, Zhengzhou 450001, China)

  • Yibo Yan

    (College of Civil Engineering, Henan University of Technology, Zhengzhou 450001, China)

  • Qi Chen

    (College of Civil Engineering, Henan University of Technology, Zhengzhou 450001, China)

  • Ze Liu

    (Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China)

Abstract

Given the accelerating speed and scale of urbanization in China, a rational formulation of a composite development plan to increase the vitality and value of various areas is required. Thus, this study proposes a method for evaluating the spatial relationship among facilities around bus terminals by combining urban points-of-interest data and street view image data from two perspectives: the current level of development and potential of the terminals, and an evaluation of the surrounding pedestrian environment. This is in response to the lack of quantitative descriptions of the composite development of existing bus terminals. The validity and applicability of the methods are verified using the samples of five planned composite development bus terminals in the city of Zhengzhou. These results offer strategic suggestions for the composite development of the Zhengzhou bus terminals. This study demonstrates innovation in integrating geographic information data and street view image data. It reflects the spatial characteristics of the built environment using geographic information data and the visual characteristics of the built environment using street view images.

Suggested Citation

  • Tao Zhang & Yibo Yan & Qi Chen & Ze Liu, 2022. "Evaluation Method of Composite Development Bus Terminal Using Multi-Source Data Processing," Land, MDPI, vol. 11(10), pages 1-14, October.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:10:p:1757-:d:937503
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/10/1757/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/10/1757/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cervero, Robert & Day, Jennifer, 2008. "Suburbanization and transit-oriented development in China," Transport Policy, Elsevier, vol. 15(5), pages 315-323, September.
    2. Gallego, Francisco & Montero, Juan-Pablo & Salas, Christian, 2013. "The effect of transport policies on car use: A bundling model with applications," Energy Economics, Elsevier, vol. 40(S1), pages 85-97.
    3. Te Mu & Yanqing Lao, 2022. "A Study on the Walkability of Zijingang East Campus of Zhejiang University: Based on Network Distance Walk Score," Sustainability, MDPI, vol. 14(17), pages 1-17, September.
    4. de Grange, Louis & Troncoso, Rodrigo, 2011. "Impacts of vehicle restrictions on urban transport flows: The case of Santiago, Chile," Transport Policy, Elsevier, vol. 18(6), pages 862-869, November.
    5. Ibraeva, Anna & Correia, Gonçalo Homem de Almeida & Silva, Cecília & Antunes, António Pais, 2020. "Transit-oriented development: A review of research achievements and challenges," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 110-130.
    6. Gallego, Francisco & Montero, Juan-Pablo & Salas, Christian, 2013. "The effect of transport policies on car use: Evidence from Latin American cities," Journal of Public Economics, Elsevier, vol. 107(C), pages 47-62.
    7. Zhengfeng Huang & Gang Ren & Haixu Liu, 2013. "Optimizing Bus Frequencies under Uncertain Demand: Case Study of the Transit Network in a Developing City," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-10, May.
    8. Jiacheng Jiao & John Rollo & Baibai Fu & Chunlu Liu, 2021. "Exploring Effective Built Environment Factors for Evaluating Pedestrian Volume in High-Density Areas: A New Finding for the Central Business District in Melbourne, Australia," Land, MDPI, vol. 10(6), pages 1-17, June.
    9. Papa, Enrica & Bertolini, Luca, 2015. "Accessibility and Transit-Oriented Development in European metropolitan areas," Journal of Transport Geography, Elsevier, vol. 47(C), pages 70-83.
    10. Guang Tian & Reid Ewing & Rachel Weinberger & Kevin Shively & Preston Stinger & Shima Hamidi, 2017. "Trip and parking generation at transit-oriented developments: a case study of Redmond TOD, Seattle region," Transportation, Springer, vol. 44(5), pages 1235-1254, September.
    11. Lingzhu Zhang & Yu Ye & Wenxin Zeng & Alain Chiaradia, 2019. "A Systematic Measurement of Street Quality through Multi-Sourced Urban Data: A Human-Oriented Analysis," IJERPH, MDPI, vol. 16(10), pages 1-24, May.
    12. Lucas, Karen & Philips, Ian & Mulley, Corinne & Ma, Liang, 2018. "Is transport poverty socially or environmentally driven? Comparing the travel behaviours of two low-income populations living in central and peripheral locations in the same city," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 622-634.
    13. Peng, Ya-Ting & Li, Zhi-Chun & Choi, Keechoo, 2017. "Transit-oriented development in an urban rail transportation corridor," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 269-290.
    14. Yi Lu & Guibo Sun & Chinmoy Sarkar & Zhonghua Gou & Yang Xiao, 2018. "Commuting Mode Choice in a High-Density City: Do Land-Use Density and Diversity Matter in Hong Kong?," IJERPH, MDPI, vol. 15(5), pages 1-13, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qi Chen & Yibo Yan & Xu Zhang & Jian Chen, 2022. "A Study on the Impact of Built Environment Elements on Satisfaction with Residency Whilst Considering Spatial Heterogeneity," Sustainability, MDPI, vol. 14(22), pages 1-14, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi Chen & Yibo Yan & Xu Zhang & Jian Chen, 2022. "A Study on the Impact of Built Environment Elements on Satisfaction with Residency Whilst Considering Spatial Heterogeneity," Sustainability, MDPI, vol. 14(22), pages 1-14, November.
    2. Ibraeva, Anna & Correia, Gonçalo Homem de Almeida & Silva, Cecília & Antunes, António Pais, 2020. "Transit-oriented development: A review of research achievements and challenges," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 110-130.
    3. Carrillo, Paul E. & Lopez-Luzuriaga, Andrea & Malik, Arun S., 2018. "Pollution or crime: The effect of driving restrictions on criminal activity," Journal of Public Economics, Elsevier, vol. 164(C), pages 50-69.
    4. Soto, Jose J. & Macea, Luis F. & Cantillo, Victor, 2023. "Analysing a license plate-based vehicle restriction policy with optional exemption charge: The case in Cali, Colombia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    5. Sun, Chuanwang & Xu, Shuhua & Yang, Mian & Gong, Xu, 2022. "Urban traffic regulation and air pollution: A case study of urban motor vehicle restriction policy," Energy Policy, Elsevier, vol. 163(C).
    6. Salgado, Edgar & Mitnik, Oscar A., 2021. "Spatial and Time Spillovers of Driving Restrictions: Causal Evidence from Lima's Pico Y Placa Policy," IZA Discussion Papers 14932, Institute of Labor Economics (IZA).
    7. Moyano, Amparo & Solís, Eloy & Díaz-Burgos, Elena & Rodrigo, Alejandro & Coronado, José M., 2023. "Typologies of stations’ catchment areas in metropolitan urban peripheries: From car-oriented to sustainable urban strategies," Land Use Policy, Elsevier, vol. 134(C).
    8. Ramos, Raúl & Cantillo, Víctor & Arellana, Julián & Sarmiento, Iván, 2017. "From restricting the use of cars by license plate numbers to congestion charging: Analysis for Medellin, Colombia," Transport Policy, Elsevier, vol. 60(C), pages 119-130.
    9. Zhang, Bin & Chen, Haitao & Du, Zhanjie & Wang, Zhaohua, 2020. "Does license plate rule induce low-carbon choices in residents’ daily travels: Motivation and impacts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    10. Shihe Fu & V. Brian Viard, 2022. "A mayors perspective on tackling air pollution," Chapters, in: Charles K.Y. Leung (ed.), Handbook of Real Estate and Macroeconomics, chapter 16, pages 413-437, Edward Elgar Publishing.
    11. Qiaoling Fang & Tomo Inoue & Dongqi Li & Qiang Liu & Jian Ma, 2023. "Transit-Oriented Development and Sustainable Cities: A Visual Analysis of the Literature Based on CiteSpace and VOSviewer," Sustainability, MDPI, vol. 15(10), pages 1-18, May.
    12. Yuan Liang & Quan Yuan & Daoge Wang & Yong Feng & Pengfei Xu & Jiangping Zhou, 2022. "Panacea or Placebo? Exploring Causal Effects of Nonlocal Vehicle Driving Restriction Policies on Traffic Congestion Using Difference-in-differences Approach," Papers 2208.11577, arXiv.org, revised Jan 2023.
    13. Caplan, Arthur J. & Acharya, Ramjee, 2019. "Optimal vehicle use in the presence of episodic mobile-source air pollution," Resource and Energy Economics, Elsevier, vol. 57(C), pages 185-204.
    14. Magalhães, David José Ahouagi Vaz de & Rivera-Gonzalez, Carlos, 2021. "Car users’ attitudes towards an enhanced bus system to mitigate urban congestion in a developing country," Transport Policy, Elsevier, vol. 110(C), pages 452-464.
    15. Catherine Hausman & David S. Rapson, 2018. "Regression Discontinuity in Time: Considerations for Empirical Applications," Annual Review of Resource Economics, Annual Reviews, vol. 10(1), pages 533-552, October.
    16. Blackman, Allen & Qin, Ping & Yang, Jun, 2020. "How costly are driving restrictions? Contingent valuation evidence from Beijing," Journal of Environmental Economics and Management, Elsevier, vol. 104(C).
    17. Phani Kumar, P. & Ravi Sekhar, Ch. & Parida, Manoranjan, 2018. "Residential dissonance in TOD neighborhoods," Journal of Transport Geography, Elsevier, vol. 72(C), pages 166-177.
    18. Su, Shiliang & Wang, Zhuolun & Li, Bozhao & Kang, Mengjun, 2022. "Deciphering the influence of TOD on metro ridership: An integrated approach of extended node-place model and interpretable machine learning with planning implications," Journal of Transport Geography, Elsevier, vol. 104(C).
    19. Peng, Ya-Ting & Li, Zhi-Chun & Choi, Keechoo, 2017. "Transit-oriented development in an urban rail transportation corridor," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 269-290.
    20. Matthias Bäuml & Christian Kümpel, 2021. "Hospital responses to the refinement of reimbursements by treatment intensity in DRG systems," Health Economics, John Wiley & Sons, Ltd., vol. 30(3), pages 585-602, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:10:p:1757-:d:937503. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.