IDEAS home Printed from
   My bibliography  Save this article

Evidence of the Environmental Kuznets Curve: Unleashing the Opportunity of Industry 4.0 in Emerging Economies


  • Viktoriia Koilo

    (Hauge School of Management, NLA University College, Linstows gate 3, Oslo 0130, Norway)


This study aims to investigate the relationship of economic development, measured as economic growth, energy use, trade and foreign direct investment, on the one hand, and environmental degradation (carbon dioxide (hereafter CO2) emissions), on the other hand, in eleven emerging Eastern European and Central Asian countries during the period of 1990 to 2014. The empirical results give an evidence of a carbon emission Kuznets curve for these emerging economies. The current income level indicates that not every country has reached the turning point for CO2 emissions reductions. Income elasticities for CO2 are positive for all eleven countries. The paper concludes that within the group, Ukraine and Kazakhstan have the most sensitive change in economic growth in respect to CO2. In addition, it concludes that there is a negative effect of total energy consumption on environment as such consumption increases CO2 emissions. The results also show a positive effect of foreign direct investment (FDI) on CO2 emissions in Eastern European and Central Asian countries. It is expected that the innovative transition to a low-carbon economy offers great opportunities for economic growth and job creation. Technological leadership (the initiative Industry 4.0) should be accompanied by the development and introduction of new technologies throughout Eastern European and Central Asian countries, hence, the paradigm of “sustainable development” should be considered as fatal. Furthermore, Eastern European and Central Asian economies should consider the experience of policy making implications made by other developing countries in gaining sustainable growth. Econometric analyses prove the existence of different impact on energy consumption of the ICT sector, which plays a key supporting role for intelligent manufacturing. Thus, there is a need for further investigations of the relationship between technology use and CO2 emissions.

Suggested Citation

  • Viktoriia Koilo, 2019. "Evidence of the Environmental Kuznets Curve: Unleashing the Opportunity of Industry 4.0 in Emerging Economies," JRFM, MDPI, vol. 12(3), pages 1-18, July.
  • Handle: RePEc:gam:jjrfmx:v:12:y:2019:i:3:p:122-:d:250230

    Download full text from publisher

    File URL:
    Download Restriction: no

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Maria Avgerinou & Paolo Bertoldi & Luca Castellazzi, 2017. "Trends in Data Centre Energy Consumption under the European Code of Conduct for Data Centre Energy Efficiency," Energies, MDPI, vol. 10(10), pages 1-18, September.
    2. Fernando E. Garcia-Muiña & Rocío González-Sánchez & Anna Maria Ferrari & Davide Settembre-Blundo, 2018. "The Paradigms of Industry 4.0 and Circular Economy as Enabling Drivers for the Competitiveness of Businesses and Territories: The Case of an Italian Ceramic Tiles Manufacturing Company," Social Sciences, MDPI, vol. 7(12), pages 1-31, December.
    3. Maria J. Pouri & Lorenz M. Hilty, 2018. "Conceptualizing the Digital Sharing Economy in the Context of Sustainability," Sustainability, MDPI, vol. 10(12), pages 1-19, November.
    4. Stern, David I., 2004. "The Rise and Fall of the Environmental Kuznets Curve," World Development, Elsevier, vol. 32(8), pages 1419-1439, August.
    5. Muhammad Shahbaz & Avik Sinha, 2019. "Environmental Kuznets curve for CO2 emissions: a literature survey," Journal of Economic Studies, Emerald Group Publishing, vol. 46(1), pages 106-168, January.
    6. Hodrick, Robert J & Prescott, Edward C, 1997. "Postwar U.S. Business Cycles: An Empirical Investigation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 29(1), pages 1-16, February.
    7. Panayotou T., 1993. "Empirical tests and policy analysis of environmental degradation at different stages of economic development," ILO Working Papers 992927783402676, International Labour Organization.
    8. Hodrick, Robert J & Prescott, Edward C, 1997. "Postwar U.S. Business Cycles: An Empirical Investigation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 29(1), pages 1-16, February.
    9. Quan-Hoang Vuong, 2018. "The (ir)rational consideration of the cost of science in transition economies," Nature Human Behaviour, Nature, vol. 2(1), pages 5-5, January.
    10. Jeffrey A. Frankel & Andrew K. Rose, 2005. "Is Trade Good or Bad for the Environment? Sorting Out the Causality," The Review of Economics and Statistics, MIT Press, vol. 87(1), pages 85-91, February.
    11. Grytten, Ola Honningdal & Koilo, Viktoriia, 2019. "The Financial Instability Hypothesis and the Financial Crisis in Eastern European Emerging Economies," Discussion Paper Series in Economics 8/2019, Norwegian School of Economics, Department of Economics.
    12. Waldemar Karpa, 2017. "The Effect of Low-Carbon Innovations on Reducing Environmental Threats to Health," Journal of Innovation Economics, De Boeck Université, vol. 0(3), pages 89-104.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Carlos Andrés Tavera Romero & Diego F. Castro & Jesús Hamilton Ortiz & Osamah Ibrahim Khalaf & Miguel A. Vargas, 2021. "Synergy between Circular Economy and Industry 4.0: A Literature Review," Sustainability, MDPI, vol. 13(8), pages 1-18, April.
    2. Nutnaree Maneejuk & Sutthipat Ratchakom & Paravee Maneejuk & Woraphon Yamaka, 2020. "Does the Environmental Kuznets Curve Exist? An International Study," Sustainability, MDPI, vol. 12(21), pages 1-22, November.
    3. Chun Liu & Gui-hua Nie, 2021. "Identifying the Driving Factors of Food Nitrogen Footprint in China, 2000–2018: Econometric Analysis of Provincial Spatial Panel Data by the STIRPAT Model," Sustainability, MDPI, vol. 13(11), pages 1-23, May.
    4. Alan Barrell & Pawel Dobrzanski & Sebastian Bobowski & Krzysztof Siuda & Szymon Chmielowiec, 2021. "Efficiency of Environmental Protection Expenditures in EU Countries," Energies, MDPI, vol. 14(24), pages 1-35, December.
    5. Siri Terjesen, 2021. "Entrepreneurial Finance: Research, Practice, and Policy for Post-Covid-19 Economic Recovery," JRFM, MDPI, vol. 14(1), pages 1-4, January.
    6. Tenaw, Dagmawe & Beyene, Abebe D., 2021. "Environmental sustainability and economic development in sub-Saharan Africa: A modified EKC hypothesis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    7. Nabila Abid & Jianzu Wu & Fayyaz Ahmad & Muhammad Umar Draz & Abbas Ali Chandio & Hui Xu, 2020. "Incorporating Environmental Pollution and Human Development in the Energy-Growth Nexus: A Novel Long Run Investigation for Pakistan," IJERPH, MDPI, vol. 17(14), pages 1-22, July.
    8. Quan-Hoang Vuong, 2020. "An Unprecedented Time for Entrepreneurial Finance upon the Arrival of Industry 4.0," JRFM, MDPI, vol. 13(10), pages 1-3, September.
    9. Mohammadreza Ramezani & Leili Abolhassani & Naser Shahnoushi Foroushani & Diane Burgess & Milad Aminizadeh, 2022. "Ecological Footprint and Its Determinants in MENA Countries: A Spatial Econometric Approach," Sustainability, MDPI, vol. 14(18), pages 1-20, September.
    10. Jihuan Zhang, 2021. "Environmental Kuznets Curve Hypothesis on CO 2 Emissions: Evidence for China," JRFM, MDPI, vol. 14(3), pages 1-16, February.
    11. Muhammad Shafique & Anam Azam & Muhammad Rafiq & Xiaowei Luo, 2020. "Evaluating the Relationship between Freight Transport, Economic Prosperity, Urbanization, and CO 2 Emissions: Evidence from Hong Kong, Singapore, and South Korea," Sustainability, MDPI, vol. 12(24), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ivanovski, Kris & Awaworyi Churchill, Sefa, 2020. "Convergence and determinants of greenhouse gas emissions in Australia: A regional analysis," Energy Economics, Elsevier, vol. 92(C).
    2. Bucher, Florian & Scheu, Lucas & Schröpf, Benedikt, 2022. "Economic complexity and environmental pollution: Evidence from the former socialist transition countries," Discussion Papers 124, Friedrich-Alexander University Erlangen-Nuremberg, Chair of Labour and Regional Economics.
    3. Churchill, Sefa Awaworyi & Inekwe, John & Ivanovski, Kris & Smyth, Russell, 2018. "The Environmental Kuznets Curve in the OECD: 1870–2014," Energy Economics, Elsevier, vol. 75(C), pages 389-399.
    4. Sinha, Avik & Shahbaz, Muhammad, 2018. "Estimation of Environmental Kuznets Curve for CO2 emission: Role of renewable energy generation in India," Renewable Energy, Elsevier, vol. 119(C), pages 703-711.
    5. Florian Bucher & Lucas Scheu & Benedikt Schröpf, 2022. "Economic complexity and environmental pollution: Evidence from the former socialist transition countries," Working Papers 218, Bavarian Graduate Program in Economics (BGPE).
    6. Sharif, Arshian & Baris-Tuzemen, Ozge & Uzuner, Gizem & Ozturk, Ilhan & Sinha, Avik, 2020. "Revisiting the role of renewable and non-renewable energy consumption on Turkey’s ecological footprint: Evidence from Quantile ARDL approach," MPRA Paper 100044, University Library of Munich, Germany.
    7. Auci, Sabrina & Becchetti, Leonardo, 2006. "The instability of the adjusted and unadjusted environmental Kuznets curves," Ecological Economics, Elsevier, vol. 60(1), pages 282-298, November.
    8. Abdelmohsen A. Nassani & Muhammad Moinuddin Qazi Abro & Rubeena Batool & Syed Haider Ali Shah & Shabir Hyder & Khalid Zaman, 2021. "Go‐for‐green policies: The role of finance and trade for sustainable development," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 1409-1423, January.
    9. Alexandra-Anca Purcel, 2020. "New insights into the environmental Kuznets curve hypothesis in developing and transition economies: a literature survey," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 22(4), pages 585-631, October.
    10. Shahbaz, Muhammad & Jalil, Abdul & Dube, Smile, 2010. "Environmental Kuznets curve (EKC): Times series evidence from Portugal," MPRA Paper 27443, University Library of Munich, Germany.
    11. Sebri, Maamar, 2009. "La Zone Méditerranéenne Face à la Pollution de L’air : Une Investigation Econométrique [The Mediterranean Zone in front of Air pollution: an Econometric Investigation]," MPRA Paper 32382, University Library of Munich, Germany.
    12. Daniel Fiorino, 2011. "Explaining national environmental performance: approaches, evidence, and implications," Policy Sciences, Springer;Society of Policy Sciences, vol. 44(4), pages 367-389, November.
    13. Ajanaku, B.A. & Collins, A.R., 2021. "Economic growth and deforestation in African countries: Is the environmental Kuznets curve hypothesis applicable?," Forest Policy and Economics, Elsevier, vol. 129(C).
    14. Bartz, Sherry & Kelly, David L., 2008. "Economic growth and the environment: Theory and facts," Resource and Energy Economics, Elsevier, vol. 30(2), pages 115-149, May.
    15. Martínez-Zarzoso, Inmaculada & Oueslati, Walid, 2016. "Are deep and comprehensive regional trade agreements helping to reduce air pollution?," University of Göttingen Working Papers in Economics 292, University of Goettingen, Department of Economics.
    16. Ariane Amin & Johanna Choumert, 2015. "Development and biodiversity conservation in Sub-Saharan Africa: A spatial analysis," Economics Bulletin, AccessEcon, vol. 35(1), pages 729-744.
    17. Octavio Fernández-Amador & Joseph F. Francois & Doris A. Oberdabernig & Patrick Tomberger, 2020. "Economic growth, sectoral structures, and environmental methane footprints," Applied Economics, Taylor & Francis Journals, vol. 52(13), pages 1460-1475, March.
    18. Luzzati, T. & Orsini, M., 2009. "Investigating the energy-environmental Kuznets curve," Energy, Elsevier, vol. 34(3), pages 291-300.
    19. Cohen, Gail & Jalles, Joao Tovar & Loungani, Prakash & Marto, Ricardo, 2018. "The long-run decoupling of emissions and output: Evidence from the largest emitters," Energy Policy, Elsevier, vol. 118(C), pages 58-68.
    20. Sushama Murty, 2014. "On the environmental Kuznets curve with fossil-fuel induced emission: Theory and some illustrative examples," Discussion Papers 1406, University of Exeter, Department of Economics.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:12:y:2019:i:3:p:122-:d:250230. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.