IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i24p16539-d998325.html
   My bibliography  Save this article

How to Achieve Carbon Neutrality: From the Perspective of Innovative City Pilot Policy in China

Author

Listed:
  • Lina Liu

    (Business School, Shandong Normal University, Jinan 250358, China
    China Institute for Tax Governance, Shandong Normal University, Jinan 250358, China)

  • Yunyun Zhang

    (Business School, Shandong Normal University, Jinan 250358, China)

  • Bei Liu

    (School of Management, Nanjing University of Posts and Telecommunications, Nanjing 210003, China)

  • Pishi Xiu

    (School of Management, Wenzhou Business College, Wenzhou 325035, China)

  • Lipeng Sun

    (School of Management, Wenzhou Business College, Wenzhou 325035, China)

Abstract

The innovative city pilot policy is a new engine to accelerate the social development of China, which is an important support feature for realizing sustainable economic development. Using the city pilot policy issued by the Chinese government in 2008 as a quasi-natural experiment and the method of multi-period difference-in-differences (DID) model, we explore the effect of the policy on regional carbon emission efficiency. The research shows that the innovative city pilot policy could lead a significant promotion of the carbon emission efficiency of cities, which shows the characteristics of dynamic sustainability, that is, the policy effect continues to increase over time. Mechanism analysis reveals that the innovative city pilot policy mainly drives the improvement of urban carbon emission efficiency through improving the green technology innovation level of pilot cities, promoting the upgrading of regional industrial structure and increasing government investment in science and technology. In addition, the innovative city pilot policy has a spatial spillover effect on urban carbon emission efficiency, that is, the innovative city pilot policy not only promotes the local carbon emission efficiency, but also improves the carbon efficiency of neighboring areas.

Suggested Citation

  • Lina Liu & Yunyun Zhang & Bei Liu & Pishi Xiu & Lipeng Sun, 2022. "How to Achieve Carbon Neutrality: From the Perspective of Innovative City Pilot Policy in China," IJERPH, MDPI, vol. 19(24), pages 1-20, December.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:24:p:16539-:d:998325
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/24/16539/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/24/16539/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fei Fan & Dailin Cao & Ning Ma, 2020. "Is Improvement of Innovation Efficiency Conducive to Haze Governance? Empirical Evidence from 283 Chinese Cities," IJERPH, MDPI, vol. 17(17), pages 1-20, August.
    2. Abrell, Jan & Kosch, Mirjam & Rausch, Sebastian, 2022. "How effective is carbon pricing?—A machine learning approach to policy evaluation," Journal of Environmental Economics and Management, Elsevier, vol. 112(C).
    3. Azomahou, Theophile & Laisney, Francois & Nguyen Van, Phu, 2006. "Economic development and CO2 emissions: A nonparametric panel approach," Journal of Public Economics, Elsevier, vol. 90(6-7), pages 1347-1363, August.
    4. Koichiro Ito & Shuang Zhang, 2020. "Willingness to Pay for Clean Air: Evidence from Air Purifier Markets in China," Journal of Political Economy, University of Chicago Press, vol. 128(5), pages 1627-1672.
    5. You, Wanhai & Lv, Zhike, 2018. "Spillover effects of economic globalization on CO2 emissions: A spatial panel approach," Energy Economics, Elsevier, vol. 73(C), pages 248-257.
    6. Li, Jinying & Li, Sisi, 2020. "Energy investment, economic growth and carbon emissions in China—Empirical analysis based on spatial Durbin model," Energy Policy, Elsevier, vol. 140(C).
    7. Marbuah, George & Amuakwa-Mensah, Franklin, 2017. "Spatial analysis of emissions in Sweden," Energy Economics, Elsevier, vol. 68(C), pages 383-394.
    8. Esteban Rossi-Hansberg & Mark L. J. Wright, 2007. "Urban Structure and Growth," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 74(2), pages 597-624.
    9. Leuz, Christian & Oberholzer-Gee, Felix, 2006. "Political relationships, global financing, and corporate transparency: Evidence from Indonesia," Journal of Financial Economics, Elsevier, vol. 81(2), pages 411-439, August.
    10. Aiping Wang & Weifen Lin & Bei Liu & Hui Wang & Hong Xu, 2021. "Does Smart City Construction Improve the Green Utilization Efficiency of Urban Land?," Land, MDPI, vol. 10(6), pages 1-18, June.
    11. John Paul Helveston & Gang He & Michael R. Davidson, 2022. "Quantifying the cost savings of global solar photovoltaic supply chains," Nature, Nature, vol. 612(7938), pages 83-87, December.
    12. Ren, Shenggang & Hu, Yucai & Zheng, Jingjing & Wang, Yangjie, 2020. "Emissions trading and firm innovation: Evidence from a natural experiment in China," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
    13. Ang, James B., 2009. "CO2 emissions, research and technology transfer in China," Ecological Economics, Elsevier, vol. 68(10), pages 2658-2665, August.
    14. Joshua Graff Zivin & Matthew Neidell, 2012. "The Impact of Pollution on Worker Productivity," American Economic Review, American Economic Association, vol. 102(7), pages 3652-3673, December.
    15. Alexandra Niessen & Stefan Ruenzi, 2010. "Political Connectedness and Firm Performance: Evidence from Germany," German Economic Review, Verein für Socialpolitik, vol. 11(4), pages 441-464, November.
    16. Chen, Shiyi, 2015. "Environmental pollution emissions, regional productivity growth and ecological economic development in China," China Economic Review, Elsevier, vol. 35(C), pages 171-182.
    17. Wang, Guofeng & Deng, Xiangzheng & Wang, Jingyu & Zhang, Fan & Liang, Shiqi, 2019. "Carbon emission efficiency in China: A spatial panel data analysis," China Economic Review, Elsevier, vol. 56(C), pages 1-1.
    18. Matthew A. Cole & Eric Neumayer, 2003. "Examining the Impact of Demographic Factors On Air Pollution," Labor and Demography 0312005, University Library of Munich, Germany, revised 13 May 2004.
    19. Li, Zhimin & Pan, Yanchun & Yang, Wen & Ma, Jianhua & Zhou, Ming, 2021. "Effects of government subsidies on green technology investment and green marketing coordination of supply chain under the cap-and-trade mechanism," Energy Economics, Elsevier, vol. 101(C).
    20. Gao, Kang & Yuan, Yijun, 2021. "The effect of innovation-driven development on pollution reduction: Empirical evidence from a quasi-natural experiment in China," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    21. Gehrsitz, Markus, 2017. "The effect of low emission zones on air pollution and infant health," Journal of Environmental Economics and Management, Elsevier, vol. 83(C), pages 121-144.
    22. Jintao Ma & Qiuguang Hu & Weiteng Shen & Xinyi Wei, 2021. "Does the Low-Carbon City Pilot Policy Promote Green Technology Innovation? Based on Green Patent Data of Chinese A-Share Listed Companies," IJERPH, MDPI, vol. 18(7), pages 1-18, April.
    23. Alam, Shaista & Fatima, Ambreen & Butt, Muhammad S., 2007. "Sustainable development in Pakistan in the context of energy consumption demand and environmental degradation," Journal of Asian Economics, Elsevier, vol. 18(5), pages 825-837, October.
    24. JiYoung Park & G. William Page, 2017. "Innovative green economy, urban economic performance and urban environments: an empirical analysis of US cities," European Planning Studies, Taylor & Francis Journals, vol. 25(5), pages 772-789, May.
    25. Choi, Joonhwan & Lee, Jaegul, 2017. "Repairing the R&D market failure: Public R&D subsidy and the composition of private R&D," Research Policy, Elsevier, vol. 46(8), pages 1465-1478.
    26. Fan, Meiting & Li, Mengxu & Liu, Jianghua & Shao, Shuai, 2022. "Is high natural resource dependence doomed to low carbon emission efficiency? Evidence from 283 cities in China," Energy Economics, Elsevier, vol. 115(C).
    27. Cheng, Zhonghua & Li, Lianshui & Liu, Jun, 2018. "Industrial structure, technical progress and carbon intensity in China's provinces," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2935-2946.
    28. Fan, Ying & Wu, Jie & Xia, Yan & Liu, Jing-Yu, 2016. "How will a nationwide carbon market affect regional economies and efficiency of CO2 emission reduction in China?," China Economic Review, Elsevier, vol. 38(C), pages 151-166.
    29. Wang, Linhui & Wang, Hui & Cao, Zhanglu & He, Yongda & Dong, Zhiqing & Wang, Shixiang, 2022. "Can industrial intellectualization reduce carbon emissions? — Empirical evidence from the perspective of carbon total factor productivity in China," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    30. Holtedahl, Pernille & Joutz, Frederick L., 2004. "Residential electricity demand in Taiwan," Energy Economics, Elsevier, vol. 26(2), pages 201-224, March.
    31. Yu, Yantuan & Zhang, Ning, 2021. "Low-carbon city pilot and carbon emission efficiency: Quasi-experimental evidence from China," Energy Economics, Elsevier, vol. 96(C).
    32. Shi, Xinzheng & Xu, Zhufeng, 2018. "Environmental regulation and firm exports: Evidence from the eleventh Five-Year Plan in China," Journal of Environmental Economics and Management, Elsevier, vol. 89(C), pages 187-200.
    33. Haitao Zheng & Jie Hu & Shanshan Wang & Huiwen Wang, 2019. "Examining the influencing factors of CO2 emissions at city level via panel quantile regression: evidence from 102 Chinese cities," Applied Economics, Taylor & Francis Journals, vol. 51(35), pages 3906-3919, July.
    34. Lan, Fei & Sun, Li & Pu, Wenyan, 2021. "Research on the influence of manufacturing agglomeration modes on regional carbon emission and spatial effect in China," Economic Modelling, Elsevier, vol. 96(C), pages 346-352.
    35. Zhou, Xiaoyan & Zhang, Jie & Li, Junpeng, 2013. "Industrial structural transformation and carbon dioxide emissions in China," Energy Policy, Elsevier, vol. 57(C), pages 43-51.
    36. Wenbin Cao & Ying Zhang & Peng Qian, 2019. "The Effect of Innovation-Driven Strategy on Green Economic Development in China—An Empirical Study of Smart Cities," IJERPH, MDPI, vol. 16(9), pages 1-11, April.
    37. Başak Kalkanci & Morvarid Rahmani & L. Beril Toktay, 2019. "The Role of Inclusive Innovation in Promoting Social Sustainability," Production and Operations Management, Production and Operations Management Society, vol. 28(12), pages 2960-2982, December.
    38. Du, Kerui & Li, Pengzhen & Yan, Zheming, 2019. "Do green technology innovations contribute to carbon dioxide emission reduction? Empirical evidence from patent data," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 297-303.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhengjun Hu & Shanshan Li, 2023. "Innovation-Driven Policy and Low-Carbon Technology Innovation: Research Driven by the Impetus of National Innovative City Pilot Policy in China," Sustainability, MDPI, vol. 15(11), pages 1-18, May.
    2. Long Qian & Xiaolin Xu & Yunjie Zhou & Ying Sun & Duoliang Ma, 2023. "Carbon Emission Reduction Effects of the Smart City Pilot Policy in China," Sustainability, MDPI, vol. 15(6), pages 1-24, March.
    3. Ziyang Chen & Xiao Feng & Ziwen He, 2022. "A Key to Stimulate Green Technology Innovation in China: The Expansion of High-Speed Railways," IJERPH, MDPI, vol. 20(1), pages 1-21, December.
    4. Jian Wen & Shiwei Su, 2023. "An Empirical Analysis of the Synergistic Effect of Urban Pilot Policies in China," Sustainability, MDPI, vol. 15(7), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ling Luo & Yang Fu & Hui Li, 2023. "Do Urban Innovation Policies Reduce Carbon Emission? Empirical Evidence from Chinese Cities with DID," Sustainability, MDPI, vol. 15(8), pages 1-17, April.
    2. Li, Ke & Lin, Boqiang, 2015. "Impacts of urbanization and industrialization on energy consumption/CO2 emissions: Does the level of development matter?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1107-1122.
    3. Xu, Jian & Zheng, Jiaxing, 2022. "Mass media, air quality, and management turnover," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 81(C).
    4. Gao, Kang & Yuan, Yijun, 2021. "The effect of innovation-driven development on pollution reduction: Empirical evidence from a quasi-natural experiment in China," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    5. Yongjiao Wu & Huazhu Zheng & Yu Li & Claudio O. Delang & Jiao Qian, 2021. "Carbon Productivity and Mitigation: Evidence from Industrial Development and Urbanization in the Central and Western Regions of China," Sustainability, MDPI, vol. 13(16), pages 1-23, August.
    6. Ruijing Zheng & Yu Cheng & Haimeng Liu & Wei Chen & Xiaodong Chen & Yaping Wang, 2022. "The Spatiotemporal Distribution and Drivers of Urban Carbon Emission Efficiency: The Role of Technological Innovation," IJERPH, MDPI, vol. 19(15), pages 1-22, July.
    7. Rasool, Samma Faiz & Zaman, Shah & Jehan, Noor & Chin, Tachia & Khan, Saleem & Zaman, Qamar uz, 2022. "Investigating the role of the tech industry, renewable energy, and urbanization in sustainable environment: Policy directions in the context of developing economies," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    8. Jiang, Qichuan & Ma, Xuejiao, 2021. "Spillovers of environmental regulation on carbon emissions network," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    9. Ke Liu & Xinyue Xie & Mingxue Zhao & Qian Zhou, 2022. "Carbon Emissions in the Yellow River Basin: Analysis of Spatiotemporal Evolution Characteristics and Influencing Factors Based on a Logarithmic Mean Divisia Index (LMDI) Decomposition Method," Sustainability, MDPI, vol. 14(15), pages 1-18, August.
    10. Sun, Hongye & Kim, Giseung, 2021. "The composite impact of ICT industry on lowering carbon intensity: From the perspective of regional heterogeneity," Technology in Society, Elsevier, vol. 66(C).
    11. Fan, Wei & Li, Li & Wang, Feiran & Li, Ding, 2020. "Driving factors of CO2 emission inequality in China: The role of government expenditure," China Economic Review, Elsevier, vol. 64(C).
    12. Li, Li & Hong, Xuefei & Peng, Ke, 2019. "A spatial panel analysis of carbon emissions, economic growth and high-technology industry in China," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 83-92.
    13. Ping Lu & Zhihong Li & Ying Wen & Jianhui Liu & Yue Yuan & Ruiyu Niu & Yiran Wang & Liangliang Han, 2023. "Fresh insights for sustainable development: Collaborative governance of carbon emissions based on social network analysis," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(3), pages 1873-1887, June.
    14. Arshian Sharif, Syed Ali Raza, 2016. "Dynamic Relationship between Urbanization, Energy Consumption and Environmental Degradation in Pakistan: Evidence from Structure Break Testing," Journal of Management Sciences, Geist Science, Iqra University, Faculty of Business Administration, vol. 3(1), pages 01-21, March.
    15. Bing Kuang & Jinjin Liu & Xiangyu Fan, 2022. "Has China’s Low-Carbon City Construction Enhanced the Green Utilization Efficiency of Urban Land?," IJERPH, MDPI, vol. 19(16), pages 1-20, August.
    16. Jian Song & Jing Wang & Zhe Chen, 2022. "How Low-Carbon Pilots Affect Chinese Urban Energy Efficiency: An Explanation from Technological Progress," IJERPH, MDPI, vol. 19(23), pages 1, November.
    17. Yan, Zheming & Sun, Zao & Shi, Rui & Zhao, Minjuan, 2023. "Smart city and green development: Empirical evidence from the perspective of green technological innovation," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    18. Yan, Bin & Wang, Feng & Dong, Mingru & Ren, Jing & Liu, Juan & Shan, Jing, 2022. "How do financial spatial structure and economic agglomeration affect carbon emission intensity? Theory extension and evidence from China," Economic Modelling, Elsevier, vol. 108(C).
    19. Chai, Jian & Tian, Lingyue & Jia, Ruining, 2023. "New energy demonstration city, spatial spillover and carbon emission efficiency: Evidence from China's quasi-natural experiment," Energy Policy, Elsevier, vol. 173(C).
    20. Pan, Minjie & Zhao, Xin & lv, Kangjuan & Rosak-Szyrocka, Joanna & Mentel, Grzegorz & Truskolaski, Tadeusz, 2023. "Internet development and carbon emission-reduction in the era of digitalization: Where will resource-based cities go?," Resources Policy, Elsevier, vol. 81(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:24:p:16539-:d:998325. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.