IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i8p6739-d1125249.html
   My bibliography  Save this article

Do Urban Innovation Policies Reduce Carbon Emission? Empirical Evidence from Chinese Cities with DID

Author

Listed:
  • Ling Luo

    (Department of Public Management, School of Government, Shenzhen University, Shenzhen 518060, China)

  • Yang Fu

    (Department of Public Management, School of Government, Shenzhen University, Shenzhen 518060, China)

  • Hui Li

    (Department of Human Resource Management, College of Management, Shenzhen University, Shenzhen 518060, China)

Abstract

The Chinese government launched the Pilot Scheme of National Innovative Cities in 2008, and it has continued to expand the scope of the program in order to achieve more high-quality and sustainable development. This pilot scheme encourages scientific and technological innovations to solve the problems of urban development against the background of climate change by promoting the sustainable transformation and upgrading of the urban economy. This article attempts to examine whether the innovative city pilot helps improve the city’s carbon emissions. Moreover, through which mechanisms does the pilot affect the carbon emissions of Chinese cities? The authors use the Pilot Scheme of National Innovative Cities as a quasi-natural experiment and apply the difference-in-difference (DID) method to investigate the impact of innovative city pilot policy on the carbon emissions of pilot cities and the underlying mechanisms.

Suggested Citation

  • Ling Luo & Yang Fu & Hui Li, 2023. "Do Urban Innovation Policies Reduce Carbon Emission? Empirical Evidence from Chinese Cities with DID," Sustainability, MDPI, vol. 15(8), pages 1-17, April.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:8:p:6739-:d:1125249
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/8/6739/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/8/6739/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shengjun Yuan & Jie Li & Jun Wu, 2023. "Examining the Promotional Effect and Mechanism of Innovative City Pilot Policy on City Brand Development," Sustainability, MDPI, vol. 15(3), pages 1-16, January.
    2. Xian Zhao & Yiting Dong & Xinshu Gong, 2022. "The Digital Economy and Carbon Productivity: Evidence at China’s City Level," Sustainability, MDPI, vol. 14(17), pages 1-20, August.
    3. Fei Fan & Dailin Cao & Ning Ma, 2020. "Is Improvement of Innovation Efficiency Conducive to Haze Governance? Empirical Evidence from 283 Chinese Cities," IJERPH, MDPI, vol. 17(17), pages 1-20, August.
    4. Danish I. Godil & Zhang Yu & Arshian Sharif & Rimsha Usman & Syed Abdul Rehman Khan, 2021. "Investigate the role of technology innovation and renewable energy in reducing transport sector CO2 emission in China: A path toward sustainable development," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(4), pages 694-707, July.
    5. Chi-Wei Su & Yannong Xie & Sadaf Shahab & Ch. Muhammad Nadeem Faisal & Muhammad Hafeez & Ghulam Muhammad Qamri, 2021. "Towards Achieving Sustainable Development: Role of Technology Innovation, Technology Adoption and CO 2 Emission for BRICS," IJERPH, MDPI, vol. 18(1), pages 1-13, January.
    6. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    7. Zhang, Fan & Deng, Xiangzheng & Phillips, Fred & Fang, Chuanglin & Wang, Chao, 2020. "Impacts of industrial structure and technical progress on carbon emission intensity: Evidence from 281 cities in China," Technological Forecasting and Social Change, Elsevier, vol. 154(C).
    8. Zhao, Jun & Jiang, Qingzhe & Dong, Xiucheng & Dong, Kangyin & Jiang, Hongdian, 2022. "How does industrial structure adjustment reduce CO2 emissions? Spatial and mediation effects analysis for China," Energy Economics, Elsevier, vol. 105(C).
    9. Ben Arfi, Wissal & Hikkerova, Lubica & Sahut, Jean-Michel, 2018. "External knowledge sources, green innovation and performance," Technological Forecasting and Social Change, Elsevier, vol. 129(C), pages 210-220.
    10. Zhaoyang Zhao & Yanhong Zheng & Yuhong Chen & Chong Ye & Zeyu He & Daqing Gong, 2021. "Research on the Impact of Innovative City Construction on Financial Development: Evidence from China," Discrete Dynamics in Nature and Society, Hindawi, vol. 2021, pages 1-10, November.
    11. Zhou, Xiaoyan & Zhang, Jie & Li, Junpeng, 2013. "Industrial structural transformation and carbon dioxide emissions in China," Energy Policy, Elsevier, vol. 57(C), pages 43-51.
    12. Rahman, Mohammad Mafizur & Alam, Khosrul, 2021. "Clean energy, population density, urbanization and environmental pollution nexus: Evidence from Bangladesh," Renewable Energy, Elsevier, vol. 172(C), pages 1063-1072.
    13. Du, Limin & Wei, Chu & Cai, Shenghua, 2012. "Economic development and carbon dioxide emissions in China: Provincial panel data analysis," China Economic Review, Elsevier, vol. 23(2), pages 371-384.
    14. Xu, Le & Fan, Meiting & Yang, Lili & Shao, Shuai, 2021. "Heterogeneous green innovations and carbon emission performance: Evidence at China's city level," Energy Economics, Elsevier, vol. 99(C).
    15. Song Wang & Jiexin Wang & Chenqi Wei & Xueli Wang & Fei Fan, 2021. "Collaborative innovation efficiency: From within cities to between cities—Empirical analysis based on innovative cities in China," Growth and Change, Wiley Blackwell, vol. 52(3), pages 1330-1360, September.
    16. Gao, Kang & Yuan, Yijun, 2021. "The effect of innovation-driven development on pollution reduction: Empirical evidence from a quasi-natural experiment in China," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    17. Du, Kerui & Li, Pengzhen & Yan, Zheming, 2019. "Do green technology innovations contribute to carbon dioxide emission reduction? Empirical evidence from patent data," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 297-303.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ai, Hongshan & Mangla, Sachin Kumar & Song, Malin & Tan, Xiaoqing & Zhang, Shangfeng, 2024. "Technology-enabled business model innovation and carbon emission reduction: Evidence from a place-based policy in China," Technovation, Elsevier, vol. 134(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lina Liu & Yunyun Zhang & Bei Liu & Pishi Xiu & Lipeng Sun, 2022. "How to Achieve Carbon Neutrality: From the Perspective of Innovative City Pilot Policy in China," IJERPH, MDPI, vol. 19(24), pages 1-20, December.
    2. Cheng, Xiaoqiang & Yao, Dingjun & Qian, Yuanyuan & Wang, Bin & Zhang, Deliang, 2023. "How does fintech influence carbon emissions: Evidence from China's prefecture-level cities," International Review of Financial Analysis, Elsevier, vol. 87(C).
    3. Ostadzad, Ali Hossein, 2022. "Innovation and carbon emissions: Fixed-effects panel threshold model estimation for renewable energy," Renewable Energy, Elsevier, vol. 198(C), pages 602-617.
    4. Wang, Xiong & Wang, Xiao & Ren, Xiaohang & Wen, Fenghua, 2022. "Can digital financial inclusion affect CO2 emissions of China at the prefecture level? Evidence from a spatial econometric approach," Energy Economics, Elsevier, vol. 109(C).
    5. Lin, Boqiang & Ma, Ruiyang, 2022. "Green technology innovations, urban innovation environment and CO2 emission reduction in China: Fresh evidence from a partially linear functional-coefficient panel model," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    6. Chen, Fu & Wang, Liyun & Gu, Qiaojing & Wang, Mingyue & Ding, Xuanwen, 2022. "Nexus between natural resources, financial development, green innovation and environmental sustainability in China: Fresh insight from novel quantile ARDL," Resources Policy, Elsevier, vol. 79(C).
    7. Yunling Ye & Sheng Ye & Haichao Yu, 2021. "Can Industrial Collaborative Agglomeration Reduce Haze Pollution? City-Level Empirical Evidence from China," IJERPH, MDPI, vol. 18(4), pages 1-22, February.
    8. Senlin Hu & Gang Zeng & Xianzhong Cao & Huaxi Yuan & Bing Chen, 2021. "Does Technological Innovation Promote Green Development? A Case Study of the Yangtze River Economic Belt in China," IJERPH, MDPI, vol. 18(11), pages 1-18, June.
    9. Wang, Enci & Su, Bin & Zhong, Sheng & Guo, Qinxin, 2022. "China's Embodied SO2 Emissions and Aggregate Embodied SO2 Intensities in Interprovincial and International Trade," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    10. Xinghua Wang & Shunchen Wu & Xiaojuan Qin & Meixiang La & Haixia Zuo, 2022. "Informal Environment Regulation, Green Technology Innovation and Air Pollution: Quasi-Natural Experiments from Prefectural Cities in China," Sustainability, MDPI, vol. 14(10), pages 1-13, May.
    11. Yan, Yu & Huang, Junbing, 2022. "The role of population agglomeration played in China's carbon intensity: A city-level analysis," Energy Economics, Elsevier, vol. 114(C).
    12. Chai, Jian & Tian, Lingyue & Jia, Ruining, 2023. "New energy demonstration city, spatial spillover and carbon emission efficiency: Evidence from China's quasi-natural experiment," Energy Policy, Elsevier, vol. 173(C).
    13. Pan, Minjie & Zhao, Xin & lv, Kangjuan & Rosak-Szyrocka, Joanna & Mentel, Grzegorz & Truskolaski, Tadeusz, 2023. "Internet development and carbon emission-reduction in the era of digitalization: Where will resource-based cities go?," Resources Policy, Elsevier, vol. 81(C).
    14. Ning Ma & Puyu Liu & Yadong Xiao & Hengyun Tang & Jianqing Zhang, 2022. "Can Green Technological Innovation Reduce Hazardous Air Pollutants?—An Empirical Test Based on 283 Cities in China," IJERPH, MDPI, vol. 19(3), pages 1-20, January.
    15. You, Jianmin & Zhang, Wei, 2022. "How heterogeneous technological progress promotes industrial structure upgrading and industrial carbon efficiency? Evidence from China's industries," Energy, Elsevier, vol. 247(C).
    16. Shijing Nan & Zhaomin Wang & Jinwei Wang & Jianluan Wu, 2022. "Investigating the Role of Green Innovation in Economic Growth and Carbon Emissions Nexus for China: New Evidence Based on the PSTR Model," Sustainability, MDPI, vol. 14(24), pages 1-19, December.
    17. Wang, Jianda & Dong, Kangyin & Dong, Xiucheng & Taghizadeh-Hesary, Farhad, 2022. "Assessing the digital economy and its carbon-mitigation effects: The case of China," Energy Economics, Elsevier, vol. 113(C).
    18. Liu, Xiaoxiao & Niu, Qian & Dong, Shuli & Zhong, Shuiying, 2023. "How does renewable energy consumption affect carbon emission intensity? Temporal-spatial impact analysis in China," Energy, Elsevier, vol. 284(C).
    19. Chandrarin, Grahita & Sohag, Kazi & Cahyaningsih, Diyah Sukanti & Yuniawan, Dani, 2022. "Will economic sophistication contribute to Indonesia's emission target? A decomposed analysis," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    20. Shu, Yunxia & Deng, Nanxin & Wu, Yuming & Bao, Shuming & Bie, Ao, 2023. "Urban governance and sustainable development: The effect of smart city on carbon emission in China," Technological Forecasting and Social Change, Elsevier, vol. 193(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:8:p:6739-:d:1125249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.