IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i8p584-d74808.html
   My bibliography  Save this article

Environmental and Economic Performance of an Li-Ion Battery Pack: A Multiregional Input-Output Approach

Author

Listed:
  • Javier Sanfélix

    (Electrotechnical Engineering and Energy Technology, Mobility and Automotive Technology Research Group (MOBI), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium)

  • Cristina De la Rúa

    (Research Centre on Energy, Environment and Technologies (CIEMAT), Energy Department, Energy Systems Analysis Unit, Av. Complutense 40, 28040 Madrid, Spain)

  • Jannick Hoejrup Schmidt

    (Department of Development and Planning, Aalborg University, Skibbrogade 5 1, 9000 Aalborg, Denmark)

  • Maarten Messagie

    (Electrotechnical Engineering and Energy Technology, Mobility and Automotive Technology Research Group (MOBI), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium)

  • Joeri Van Mierlo

    (Electrotechnical Engineering and Energy Technology, Mobility and Automotive Technology Research Group (MOBI), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium)

Abstract

In this paper, the environmental and economic impacts of the life cycle of an advanced lithium based energy storage system (ESS) for a battery electric vehicle are assessed. The methodology followed to perform the study is a Multiregional Input–Output (MRIO) analysis, with a world IO table that combines detailed information on national production activities and international trade data for 40 countries and a region called Rest of the World. The life cycle stages considered in the study are manufacturing, use and recycling. The functional unit is one ESS with a 150,000 km lifetime. The results of the MRIO analysis show the stimulation that the life cycle of the EES has in the economy, in terms of production of goods and services. The manufacturing is the life cycle stage with the highest environmental load for all the impact categories assessed. The geographical resolution of the results show the relevance that some countries may have in the environmental performance of the assessed product even if they are not directly involved in any of the stages of the life cycle, proving the significance of the indirect effects.

Suggested Citation

  • Javier Sanfélix & Cristina De la Rúa & Jannick Hoejrup Schmidt & Maarten Messagie & Joeri Van Mierlo, 2016. "Environmental and Economic Performance of an Li-Ion Battery Pack: A Multiregional Input-Output Approach," Energies, MDPI, vol. 9(8), pages 1-15, July.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:8:p:584-:d:74808
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/8/584/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/8/584/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Richard Wood & Konstantin Stadler & Tatyana Bulavskaya & Stephan Lutter & Stefan Giljum & Arjan De Koning & Jeroen Kuenen & Helmut Schütz & José Acosta-Fernández & Arkaitz Usubiaga & Moana Simas & Olg, 2014. "Global Sustainability Accounting—Developing EXIOBASE for Multi-Regional Footprint Analysis," Sustainability, MDPI, vol. 7(1), pages 1-26, December.
    2. Hung, Yi-Hsuan & Wu, Chien-Hsun, 2012. "An integrated optimization approach for a hybrid energy system in electric vehicles," Applied Energy, Elsevier, vol. 98(C), pages 479-490.
    3. Calds, N. & Varela, M. & Santamara, M. & Sez, R., 2009. "Economic impact of solar thermal electricity deployment in Spain," Energy Policy, Elsevier, vol. 37(5), pages 1628-1636, May.
    4. Maarten Messagie & Kenneth Lebeau & Thierry Coosemans & Cathy Macharis & Joeri Van Mierlo, 2013. "Environmental and Financial Evaluation of Passenger Vehicle Technologies in Belgium," Sustainability, MDPI, vol. 5(12), pages 1-14, November.
    5. Björn Nykvist & Måns Nilsson, 2015. "Rapidly falling costs of battery packs for electric vehicles," Nature Climate Change, Nature, vol. 5(4), pages 329-332, April.
    6. Marcel P. Timmer & Erik Dietzenbacher & Bart Los & Robert Stehrer & Gaaitzen J. Vries, 2015. "An Illustrated User Guide to the World Input–Output Database: the Case of Global Automotive Production," Review of International Economics, Wiley Blackwell, vol. 23(3), pages 575-605, August.
    7. Trovão, João P. & Pereirinha, Paulo G. & Jorge, Humberto M. & Antunes, Carlos Henggeler, 2013. "A multi-level energy management system for multi-source electric vehicles – An integrated rule-based meta-heuristic approach," Applied Energy, Elsevier, vol. 105(C), pages 304-318.
    8. Capasso, Clemente & Veneri, Ottorino, 2014. "Experimental analysis on the performance of lithium based batteries for road full electric and hybrid vehicles," Applied Energy, Elsevier, vol. 136(C), pages 921-930.
    9. Sanfélix, Javier & Messagie, Maarten & Omar, Noshin & Van Mierlo, Joeri & Hennige, Volker, 2015. "Environmental performance of advanced hybrid energy storage systems for electric vehicle applications," Applied Energy, Elsevier, vol. 137(C), pages 925-930.
    10. He, Hongwen & Xiong, Rui & Zhao, Kai & Liu, Zhentong, 2013. "Energy management strategy research on a hybrid power system by hardware-in-loop experiments," Applied Energy, Elsevier, vol. 112(C), pages 1311-1317.
    11. Erik Dietzenbacher & Bart Los & Robert Stehrer & Marcel Timmer & Gaaitzen de Vries, 2013. "The Construction Of World Input-Output Tables In The Wiod Project," Economic Systems Research, Taylor & Francis Journals, vol. 25(1), pages 71-98, March.
    12. Maarten Messagie & Faycal-Siddikou Boureima & Thierry Coosemans & Cathy Macharis & Joeri Van Mierlo, 2014. "A Range-Based Vehicle Life Cycle Assessment Incorporating Variability in the Environmental Assessment of Different Vehicle Technologies and Fuels," Energies, MDPI, vol. 7(3), pages 1-16, March.
    13. Manfred Lenzen & Daniel Moran & Keiichiro Kanemoto & Arne Geschke, 2013. "Building Eora: A Global Multi-Region Input-Output Database At High Country And Sector Resolution," Economic Systems Research, Taylor & Francis Journals, vol. 25(1), pages 20-49, March.
    14. Noshin Omar & Mohamed Daowd & Peter van den Bossche & Omar Hegazy & Jelle Smekens & Thierry Coosemans & Joeri van Mierlo, 2012. "Rechargeable Energy Storage Systems for Plug-in Hybrid Electric Vehicles—Assessment of Electrical Characteristics," Energies, MDPI, vol. 5(8), pages 1-37, August.
    15. Al-Alawi, Baha M. & Bradley, Thomas H., 2013. "Review of hybrid, plug-in hybrid, and electric vehicle market modeling Studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 190-203.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Xi-Yin & Xu, Zhicheng & Zheng, Jialin & Zhou, Ya & Lei, Kun & Fu, Jiafeng & Khu, Soon-Thiam & Yang, Junfeng, 2023. "Internal spillover effect of carbon emission between transportation sectors and electricity generation sectors," Renewable Energy, Elsevier, vol. 208(C), pages 356-366.
    2. Wen Wen & Qi Wang, 2017. "Are Developed Regions in China Achieving Their CO 2 Emissions Reduction Targets on Their Own?—Case of Beijing," Energies, MDPI, vol. 10(12), pages 1-25, November.
    3. Marmiroli, Benedetta & Venditti, Mattia & Dotelli, Giovanni & Spessa, Ezio, 2020. "The transport of goods in the urban environment: A comparative life cycle assessment of electric, compressed natural gas and diesel light-duty vehicles," Applied Energy, Elsevier, vol. 260(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sanfélix, Javier & Messagie, Maarten & Omar, Noshin & Van Mierlo, Joeri & Hennige, Volker, 2015. "Environmental performance of advanced hybrid energy storage systems for electric vehicle applications," Applied Energy, Elsevier, vol. 137(C), pages 925-930.
    2. Pothen, Frank & Tovar Reaños, Miguel Angel, 2018. "The Distribution of Material Footprints in Germany," Ecological Economics, Elsevier, vol. 153(C), pages 237-251.
    3. Pothen, Frank, 2017. "A structural decomposition of global Raw Material Consumption," Ecological Economics, Elsevier, vol. 141(C), pages 154-165.
    4. Eivind Lekve Bjelle & Johannes Többen & Konstantin Stadler & Thomas Kastner & Michaela C. Theurl & Karl-Heinz Erb & Kjartan-Steen Olsen & Kirsten S. Wiebe & Richard Wood, 2020. "Adding country resolution to EXIOBASE: impacts on land use embodied in trade," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 9(1), pages 1-25, December.
    5. Song, Ziyou & Li, Jianqiu & Hou, Jun & Hofmann, Heath & Ouyang, Minggao & Du, Jiuyu, 2018. "The battery-supercapacitor hybrid energy storage system in electric vehicle applications: A case study," Energy, Elsevier, vol. 154(C), pages 433-441.
    6. Wang, Hongxia & Zhang, Junfeng & Fang, Hong, 2017. "Electricity footprint of China’s industrial sectors and its socioeconomic drivers," Resources, Conservation & Recycling, Elsevier, vol. 124(C), pages 98-106.
    7. Song, Ziyou & Li, Jianqiu & Han, Xuebing & Xu, Liangfei & Lu, Languang & Ouyang, Minggao & Hofmann, Heath, 2014. "Multi-objective optimization of a semi-active battery/supercapacitor energy storage system for electric vehicles," Applied Energy, Elsevier, vol. 135(C), pages 212-224.
    8. Ward, Hauke & Radebach, Alexander & Vierhaus, Ingmar & Fügenschuh, Armin & Steckel, Jan Christoph, 2017. "Reducing global CO2 emissions with the technologies we have," Resource and Energy Economics, Elsevier, vol. 49(C), pages 201-217.
    9. Pablo-Romero, María del P. & Sánchez-Braza, Antonio, 2017. "The changing of the relationships between carbon footprints and final demand: Panel data evidence for 40 major countries," Energy Economics, Elsevier, vol. 61(C), pages 8-20.
    10. Chen, B. & Yang, Q. & Zhou, Sili & Li, J.S. & Chen, G.Q., 2017. "Urban economy's carbon flow through external trade: Spatial-temporal evolution for Macao," Energy Policy, Elsevier, vol. 110(C), pages 69-78.
    11. Qian Zhang & Jun Nakatani & Yuichi Moriguchi, 2015. "Compilation of an Embodied CO 2 Emission Inventory for China Using 135-Sector Input-Output Tables," Sustainability, MDPI, vol. 7(7), pages 1-17, June.
    12. Kashkooli, Ali Ghorbani & Farhad, Siamak & Chabot, Victor & Yu, Aiping & Chen, Zhongwei, 2015. "Effects of structural design on the performance of electrical double layer capacitors," Applied Energy, Elsevier, vol. 138(C), pages 631-639.
    13. Monsalve, Fabio & Zafrilla, Jorge Enrique & Cadarso, María-Ángeles, 2016. "Where have all the funds gone? Multiregional input-output analysis of the European Agricultural Fund for Rural Development," Ecological Economics, Elsevier, vol. 129(C), pages 62-71.
    14. Kan, S.Y. & Chen, B. & Wu, X.F. & Chen, Z.M. & Chen, G.Q., 2019. "Natural gas overview for world economy: From primary supply to final demand via global supply chains," Energy Policy, Elsevier, vol. 124(C), pages 215-225.
    15. Sadam Hussain & Muhammad Umair Ali & Gwan-Soo Park & Sarvar Hussain Nengroo & Muhammad Adil Khan & Hee-Je Kim, 2019. "A Real-Time Bi-Adaptive Controller-Based Energy Management System for Battery–Supercapacitor Hybrid Electric Vehicles," Energies, MDPI, vol. 12(24), pages 1-24, December.
    16. Bruckner, Martin & Fischer, Günther & Tramberend, Sylvia & Giljum, Stefan, 2015. "Measuring telecouplings in the global land system: A review and comparative evaluation of land footprint accounting methods," Ecological Economics, Elsevier, vol. 114(C), pages 11-21.
    17. Liang, Sai & Qi, Zhengling & Qu, Shen & Zhu, Ji & Chiu, Anthony S.F. & Jia, Xiaoping & Xu, Ming, 2016. "Scaling of global input–output networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 311-319.
    18. Rodrigo Mesa-Arango & Badri Narayanan & Satish V. Ukkusuri, 2019. "The Impact of International Crises on Maritime Transportation Based Global Value Chains," Networks and Spatial Economics, Springer, vol. 19(2), pages 381-408, June.
    19. Gnann, Till & Stephens, Thomas S. & Lin, Zhenhong & Plötz, Patrick & Liu, Changzheng & Brokate, Jens, 2018. "What drives the market for plug-in electric vehicles? - A review of international PEV market diffusion models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 158-164.
    20. -, 2016. "The South American input-output table: Key assumptions and methodological considerations," Documentos de Proyectos 40832, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:8:p:584-:d:74808. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.