IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v105y2013icp304-318.html
   My bibliography  Save this article

A multi-level energy management system for multi-source electric vehicles – An integrated rule-based meta-heuristic approach

Author

Listed:
  • Trovão, João P.
  • Pereirinha, Paulo G.
  • Jorge, Humberto M.
  • Antunes, Carlos Henggeler

Abstract

In this paper, an integrated rule-based meta-heuristic optimization approach is used to deal with a multi-level energy management system for a multi-source electric vehicle for sharing energy and power between two sources with different characteristics, namely one with high specific energy (battery) and other with high specific power (SuperCapacitors). A first (long-term) management level dynamically restricts the search space based on a set of rules (strategic decisions). A second (short-term) management level implements the optimization strategy based on a meta-heuristic technique (tactical decisions). The solutions to the optimal power sharing problem are be used to generate the power references for a lower (operational) level DC–DC converters controller. The Simulated Annealing meta-heuristic is used to define an optimized energy and power share without prior knowledge of power demand. The proposed scheme has been simulated in Matlab®, with models of energy sources for several driving cycles. Illustrative results show the effectiveness of this multi-level energy management system allowing to fulfill the requested performance with better source usage and much lower installed capacities.

Suggested Citation

  • Trovão, João P. & Pereirinha, Paulo G. & Jorge, Humberto M. & Antunes, Carlos Henggeler, 2013. "A multi-level energy management system for multi-source electric vehicles – An integrated rule-based meta-heuristic approach," Applied Energy, Elsevier, vol. 105(C), pages 304-318.
  • Handle: RePEc:eee:appene:v:105:y:2013:i:c:p:304-318
    DOI: 10.1016/j.apenergy.2012.12.081
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913000081
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.12.081?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bizon, Nicu, 2012. "Energy efficiency of multiport power converters used in plug-in/V2G fuel cell vehicles," Applied Energy, Elsevier, vol. 96(C), pages 431-443.
    2. Tang, Yong & Yuan, Wei & Pan, Minqiang & Wan, Zhenping, 2011. "Experimental investigation on the dynamic performance of a hybrid PEM fuel cell/battery system for lightweight electric vehicle application," Applied Energy, Elsevier, vol. 88(1), pages 68-76, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Liangfei & Ouyang, Minggao & Li, Jianqiu & Yang, Fuyuan & Lu, Languang & Hua, Jianfeng, 2013. "Optimal sizing of plug-in fuel cell electric vehicles using models of vehicle performance and system cost," Applied Energy, Elsevier, vol. 103(C), pages 477-487.
    2. Bizon, Nicu, 2013. "Energy efficiency for the multiport power converters architectures of series and parallel hybrid power source type used in plug-in/V2G fuel cell vehicles," Applied Energy, Elsevier, vol. 102(C), pages 726-734.
    3. Kristoffersen, Trine Krogh & Capion, Karsten & Meibom, Peter, 2011. "Optimal charging of electric drive vehicles in a market environment," Applied Energy, Elsevier, vol. 88(5), pages 1940-1948, May.
    4. Vasallo, Manuel Jesús & Bravo, José Manuel & Andújar, José Manuel, 2013. "Optimal sizing for UPS systems based on batteries and/or fuel cell," Applied Energy, Elsevier, vol. 105(C), pages 170-181.
    5. Yan, Peijian & Tian, Pengfei & Cai, Cheng & Zhou, Shenghu & Yu, Xinhai & Zhao, Shuangliang & Tu, Shan-Tung & Deng, Chengwei & Sun, Yi, 2020. "Antioxidative and stable PdZn/ZnO/Al2O3 catalyst coatings concerning methanol steam reforming for fuel cell-powered vehicles," Applied Energy, Elsevier, vol. 268(C).
    6. Bizon, Nicu, 2019. "Hybrid power sources (HPSs) for space applications: Analysis of PEMFC/Battery/SMES HPS under unknown load containing pulses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 14-37.
    7. Yuan, Wei & Tang, Yong & Yang, Xiaojun & Wan, Zhenping, 2012. "Porous metal materials for polymer electrolyte membrane fuel cells – A review," Applied Energy, Elsevier, vol. 94(C), pages 309-329.
    8. Nicu Bizon & Alin Gheorghita Mazare & Laurentiu Mihai Ionescu & Phatiphat Thounthong & Erol Kurt & Mihai Oproescu & Gheorghe Serban & Ioan Lita, 2019. "Better Fuel Economy by Optimizing Airflow of the Fuel Cell Hybrid Power Systems Using Fuel Flow-Based Load-Following Control," Energies, MDPI, vol. 12(14), pages 1-17, July.
    9. Lombardi, Simone & Di Ilio, Giovanni & Tribioli, Laura & Jannelli, Elio, 2023. "Optimal design of an adaptive energy management strategy for a fuel cell tractor operating in ports," Applied Energy, Elsevier, vol. 352(C).
    10. Cheng, Shan-Jen & Miao, Jr-Ming & Wu, Sheng-Ju, 2013. "Use of metamodeling optimal approach promotes the performance of proton exchange membrane fuel cell (PEMFC)," Applied Energy, Elsevier, vol. 105(C), pages 161-169.
    11. Kim, Joonsuk & Chun, Kwang Min & Song, Soonho & Baek, Hong-Kil & Lee, Seung Woo, 2018. "Hydrogen effects on the combustion stability, performance and emissions of a turbo gasoline direct injection engine in various air/fuel ratios," Applied Energy, Elsevier, vol. 228(C), pages 1353-1361.
    12. Wang, Shuofeng & Ji, Changwei & Zhang, Bo & Liu, Xiaolong, 2014. "Lean burn performance of a hydrogen-blended gasoline engine at the wide open throttle condition," Applied Energy, Elsevier, vol. 136(C), pages 43-50.
    13. Yap, Wai Kean & Karri, Vishy, 2011. "ANN virtual sensors for emissions prediction and control," Applied Energy, Elsevier, vol. 88(12), pages 4505-4516.
    14. Yong-Song Chen & Sheng-Miao Lin & Boe-Shong Hong, 2013. "Experimental Study on a Passive Fuel Cell/Battery Hybrid Power System," Energies, MDPI, vol. 6(12), pages 1-10, December.
    15. Hung, Yi-Hsuan & Wu, Chien-Hsun, 2015. "A combined optimal sizing and energy management approach for hybrid in-wheel motors of EVs," Applied Energy, Elsevier, vol. 139(C), pages 260-271.
    16. Liu, Ze & Zhang, Baitao & Xu, Sichuan, 2022. "Research on air mass flow-pressure combined control and dynamic performance of fuel cell system for vehicles application," Applied Energy, Elsevier, vol. 309(C).
    17. Pei, Pucheng & Chen, Huicui, 2014. "Main factors affecting the lifetime of Proton Exchange Membrane fuel cells in vehicle applications: A review," Applied Energy, Elsevier, vol. 125(C), pages 60-75.
    18. Maria-Simona Răboacă & Irina Băncescu & Vasile Preda & Nicu Bizon, 2020. "An Optimization Model for the Temporary Locations of Mobile Charging Stations," Mathematics, MDPI, vol. 8(3), pages 1-20, March.
    19. Guida, D. & Minutillo, M., 2017. "Design methodology for a PEM fuel cell power system in a more electrical aircraft," Applied Energy, Elsevier, vol. 192(C), pages 446-456.
    20. Xu, X.M. & He, R., 2014. "Review on the heat dissipation performance of battery pack with different structures and operation conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 301-315.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:105:y:2013:i:c:p:304-318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.