IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i10p806-d80036.html
   My bibliography  Save this article

Is ‘Bio-Based’ Activity a Panacea for Sustainable Competitive Growth?

Author

Listed:
  • George Philippidis

    (Aragonese Agency for Research and Development (ARAID), Centre for Agro-Food Research and Technology (CITA), Government of Aragón, Avda. Montañana 930, Zaragoza 50059, Spain
    Agricultural Economics Research Institute (LEI), Wageningen University and Research Centre, Alexanderveld 5, The Hague 2585, The Netherlands)

  • Robert M’barek

    (European Commission, Joint Research Centre, Directorate Sustainable Resources, Seville 41092, Spain)

  • Emanuele Ferrari

    (European Commission, Joint Research Centre, Directorate Sustainable Resources, Seville 41092, Spain)

Abstract

Taking a European Union focus, this paper explicitly models competing uses of biomass to quantify its contribution toward a sustainable low carbon model of economic growth. To this end, a state-of-the-art multisector multiregion modelling tool is combined with a specially developed bio-based variant of a well-known global database. Employing a decomposition method of the market drivers and classifying alternative future pathways, the aim is to understand how public policies can influence the apparent trade-off between the goals of lower carbon economic growth, environmental preservation and sustainable biomass usage. Results reveal that in targeting specific societal goals public policy can be effective, although this can lead to broader economic issues of resource inefficiency and even direct policy conflicts.

Suggested Citation

  • George Philippidis & Robert M’barek & Emanuele Ferrari, 2016. "Is ‘Bio-Based’ Activity a Panacea for Sustainable Competitive Growth?," Energies, MDPI, vol. 9(10), pages 1-21, October.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:10:p:806-:d:80036
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/10/806/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/10/806/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. W. Jill Harrison & J. Mark Horridge & K.R. Pearson, 2000. "Decomposing Simulation Results with Respect to Exogenous Shocks," Computational Economics, Springer;Society for Computational Economics, vol. 15(3), pages 227-249, June.
    2. Alban Kitous & Kimon Keramidas & Toon Vandyck & Bert Saveyn, 2016. "Global Energy and Climate Outlook (GECO 2016) Road from Paris," JRC Research Reports JRC101899, Joint Research Centre.
    3. van Vliet, Oscar & van den Broek, Machteld & Turkenburg, Wim & Faaij, André, 2011. "Combining hybrid cars and synthetic fuels with electricity generation and carbon capture and storage," Energy Policy, Elsevier, vol. 39(1), pages 248-268, January.
    4. Martin Banse & Hans van Meijl & Andrzej Tabeau & Geert Woltjer, 2008. "Will EU biofuel policies affect global agricultural markets?," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 35(2), pages 117-141, June.
    5. Burniaux, Jean-Marc & Truong Truong, 2002. "GTAP-E: An Energy-Environmental Version of the GTAP Model," GTAP Technical Papers 923, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    6. Hertel, Thomas, 1997. "Global Trade Analysis: Modeling and applications," GTAP Books, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, number 7685, December.
    7. Uwe R. Fritsche & Leire Iriarte, 2014. "Sustainability Criteria and Indicators for the Bio-Based Economy in Europe: State of Discussion and Way Forward," Energies, MDPI, vol. 7(11), pages 1-12, October.
    8. Boulanger, Pierre & Philippidis, George, 2015. "The EU budget battle: Assessing the trade and welfare impacts of CAP budgetary reform," Food Policy, Elsevier, vol. 51(C), pages 119-130.
    9. M'Barek, Robert & Philippidis, George & Suta, Cornelia & Vinyes, Cristina & Caivano, Arnaldo & Ferrari, Emanuele & Ronzon, Tevecia & Sanjuan Lopez, Ana & Santini, Fabien, 2014. "Observing and analysing the Bioeconomy in the EU – Adapting data and tools to new questions and challenges," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 3(1), pages 1-9, April.
    10. Martin von Lampe & Aikaterini Kavallari & Heleen Bartelings & Hans van Meijl & Martin Banse & Joanna Ilicic-Komorowska & Franziska Junker & Frank van Tongeren, 2014. "Fertiliser and Biofuel Policies in the Global Agricultural Supply Chain: Implications for Agricultural Markets and Farm Incomes," OECD Food, Agriculture and Fisheries Papers 69, OECD Publishing.
    11. Brouwer, Anne Sjoerd & van den Broek, Machteld & Seebregts, Ad & Faaij, André, 2015. "Operational flexibility and economics of power plants in future low-carbon power systems," Applied Energy, Elsevier, vol. 156(C), pages 107-128.
    12. Martin Lampe & Dirk Willenbockel & Helal Ahammad & Elodie Blanc & Yongxia Cai & Katherine Calvin & Shinichiro Fujimori & Tomoko Hasegawa & Petr Havlik & Edwina Heyhoe & Page Kyle & Hermann Lotze-Campe, 2014. "Why do global long-term scenarios for agriculture differ? An overview of the AgMIP Global Economic Model Intercomparison," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 3-20, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rafael Ninno Muniz & Stéfano Frizzo Stefenon & William Gouvêa Buratto & Ademir Nied & Luiz Henrique Meyer & Erlon Cristian Finardi & Ricardo Marino Kühl & José Alberto Silva de Sá & Brigida Ramati Per, 2020. "Tools for Measuring Energy Sustainability: A Comparative Review," Energies, MDPI, vol. 13(9), pages 1-27, May.
    2. Ronzon, Tévécia & Piotrowski, Stephan & M’Barek, Robert & Carus, Michael, 2017. "A systematic approach to understanding and quantifying the EU’s bioeconomy," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 6(1), May.
    3. Thomas Schinko & Birgit Bednar-Friedl & Barbara Truger & Rafael Bramreiter & Nadejda Komendantova & Michael Hartner, 2020. "Economy-wide benefits and costs of local-level energy transition in Austrian Climate and Energy Model Regions," Graz Economics Papers 2020-05, University of Graz, Department of Economics.
    4. Alfredo J. Mainar Causape & George Philippidis & Ana Isabel Sanjuán, 2017. "Analysis of structural patterns in highly disaggregated bioeconomy sectors by EU Member States using SAM/IO multipliers," JRC Research Reports JRC106676, Joint Research Centre.
    5. Wiebke Jander & Sven Wydra & Johann Wackerbauer & Philipp Grundmann & Stephan Piotrowski, 2020. "Monitoring Bioeconomy Transitions with Economic–Environmental and Innovation Indicators: Addressing Data Gaps in the Short Term," Sustainability, MDPI, vol. 12(11), pages 1-18, June.
    6. Haddad, Salwa & Britz, Wolfgang & Börner, Jan, 2017. "Impacts Of Increased Forest Biomass Demand In The European Bioeconomy," 57th Annual Conference, Weihenstephan, Germany, September 13-15, 2017 261986, German Association of Agricultural Economists (GEWISOLA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philippidis, George & Bartelings, Heleen & Smeets, Edward, 2018. "Sailing into Unchartered Waters: Plotting a Course for EU Bio-Based Sectors," Ecological Economics, Elsevier, vol. 147(C), pages 410-421.
    2. George Philippidis & Robert M’barek & Emanuele Ferrari, 2016. "Drivers of the European Bioeconomy in Transition (BioEconomy2030): an exploratory, model-based assessment," JRC Research Reports JRC98160, Joint Research Centre.
    3. Bartelings, Heleen & Kavallari, Aikaterini & van Meijl, Hans & Von Lampe, Martin, 2016. "Estimating the impact of fertilizer support policies: A CGE approach," Conference papers 332684, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    4. George Philippidis & Heleen Bartelings & John Helming & Robert M’barek & Edward Smeets & Hans Van Meijl, 2018. "The Good, the Bad and the Uncertain: Bioenergy Use in the European Union," Energies, MDPI, vol. 11(10), pages 1-19, October.
    5. Hertel, Thomas W. & Tyner, Wallace E. & Birur, Dileep K., 2008. "Biofuels for all? Understanding the Global Impacts of Multinational Mandates," 2008 Annual Meeting, July 27-29, 2008, Orlando, Florida 6526, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    6. Alvaro Calzadilla & Katrin Rehdanz & Richard Betts & Pete Falloon & Andy Wiltshire & Richard Tol, 2013. "Climate change impacts on global agriculture," Climatic Change, Springer, vol. 120(1), pages 357-374, September.
    7. Banse, Martin & Rothe, Andrea & Tabeau, Andrzej & Meijl, Hans van & Woltjer, Geert, 2013. "Will improved access to capital dampen the need for more agricultural land? A CGE analysis of agricultural capital markets and world-wide biofuel policies," Working papers 155706, Factor Markets, Centre for European Policy Studies.
    8. Martin von Lampe & Aikaterini Kavallari & Heleen Bartelings & Hans van Meijl & Martin Banse & Joanna Ilicic-Komorowska & Franziska Junker & Frank van Tongeren, 2014. "Fertiliser and Biofuel Policies in the Global Agricultural Supply Chain: Implications for Agricultural Markets and Farm Incomes," OECD Food, Agriculture and Fisheries Papers 69, OECD Publishing.
    9. Sands, Ronald & Jones, Carol & Marshall, Elizabeth P., 2014. "Global Drivers of Agricultural Demand and Supply," Economic Research Report 186137, United States Department of Agriculture, Economic Research Service.
    10. Jun Yang & Huanguang Qiu & Jikun Huang & Scott Rozelle, 2008. "Fighting global food price rises in the developing world: the response of China and its effect on domestic and world markets," Agricultural Economics, International Association of Agricultural Economists, vol. 39(s1), pages 453-464, November.
    11. Tabeau, Andrzej, 2009. "Influence of macro-economic growth, CAP reforms and biofuel policy on the Polish agri-food sector in 2007–2020," Problems of World Agriculture / Problemy Rolnictwa Światowego, Warsaw University of Life Sciences, vol. 6(21), pages 1-10, March.
    12. Devarajan, Shantayanan & Go, Delfin S. & Page, John & Robinson, Sherman & Thierfelder, Karen, 2008. "Aid, growth, and real exchange rate dynamics," Policy Research Working Paper Series 4480, The World Bank.
    13. Weslem Rodrigues Faria & Eduardo Amaral Haddad, 2017. "Modeling Land Use And The Effects Of Climate Change In Brazil," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 8(01), pages 1-37, February.
    14. Mwaura, Francis, 2014. "Understanding dynamism of land ownership, use and patterns of allocation for the locals before inviting foreign investors: the Ugandan case," Conference papers 332543, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    15. Bartelings, Heleen & Verma, Monika & Boysen-Urban, Kirsten & Verma, Monika, 2021. "Waste management and circular economy in a CGE framework," Conference papers 333314, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    16. Panichelli, Luis & Gnansounou, Edgard, 2015. "Impact of agricultural-based biofuel production on greenhouse gas emissions from land-use change: Key modelling choices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 344-360.
    17. Hoefnagels, Ric & Banse, Martin & Dornburg, Veronika & Faaij, André, 2013. "Macro-economic impact of large-scale deployment of biomass resources for energy and materials on a national level—A combined approach for the Netherlands," Energy Policy, Elsevier, vol. 59(C), pages 727-744.
    18. Eboli, Fabio & Parrado, Ramiro & Roson, Roberto, 2010. "Climate-change feedback on economic growth: explorations with a dynamic general equilibrium model," Environment and Development Economics, Cambridge University Press, vol. 15(5), pages 515-533, October.
    19. Hertel, Thomas W. & Maros Ivanic & Paul Preckel & John Cranfield, 2004. "The Earnings Effects of Multilateral Trade Liberalization: Implications for Poverty in Developing Countries," GTAP Working Papers 1208, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    20. Anderson, Kym & Jackson, Lee Ann, 2004. "GM food technology abroad and its implications for Australia and New Zealand," 2004 Conference (48th), February 11-13, 2004, Melbourne, Australia 58365, Australian Agricultural and Resource Economics Society.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:10:p:806-:d:80036. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.