IDEAS home Printed from https://ideas.repec.org/a/gam/jadmsc/v10y2020i3p75-d414507.html
   My bibliography  Save this article

Managerial Decision Making in Indicating a Disruption of Critical Infrastructure Element Resilience

Author

Listed:
  • Alena Splichalova

    (Faculty of Safety Engineering, VSB—Technical University of Ostrava, 700 30 Ostrava, Czech Republic)

  • David Patrman

    (Faculty of Safety Engineering, VSB—Technical University of Ostrava, 700 30 Ostrava, Czech Republic)

  • Nikol Kotalova

    (Faculty of Safety Engineering, VSB—Technical University of Ostrava, 700 30 Ostrava, Czech Republic)

  • Martin Hromada

    (Faculty of Applied Informatics, Tomas Bata University in Zlin, 760 05 Zlin, Czech Republic)

Abstract

Managerial decision making is an integral process used in public and private organizations. Critical infrastructure entities are a strategically significant group dependent on the quality of decision-making processes. They aim to provide services necessary to ensure state security and to satisfy basic human needs. The quality of decision making is an important factor in the management of these entities. The quality level is determined by many factors, the key of which is risk management. For this reason, it is necessary for the operators to minimize risks affecting the elements of the critical infrastructure through which these services are provided. Risk management is commonly used for this purpose, making it possible to assess and manage these risks. However, there is a specific group of threats that affects the resilience of these elements. The indication of these threats is not possible through common risk management. Therefore, it is necessary to develop specific scenarios of negative impacts and procedures for assessing their impact on the resilience of elements of the critical infrastructure. To this end, this conceptual article introduces an entirely new managerial decision-making process for indicating the resilience of critical infrastructure elements.

Suggested Citation

  • Alena Splichalova & David Patrman & Nikol Kotalova & Martin Hromada, 2020. "Managerial Decision Making in Indicating a Disruption of Critical Infrastructure Element Resilience," Administrative Sciences, MDPI, vol. 10(3), pages 1-18, September.
  • Handle: RePEc:gam:jadmsc:v:10:y:2020:i:3:p:75-:d:414507
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2076-3387/10/3/75/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2076-3387/10/3/75/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexander Fekete & Peter Lauwe & Wolfram Geier, 2012. "Risk management goals and identification of critical infrastructures," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 8(4), pages 336-353.
    2. JosÉ Figueira & Salvatore Greco & Matthias Ehrogott, 2005. "Multiple Criteria Decision Analysis: State of the Art Surveys," International Series in Operations Research and Management Science, Springer, number 978-0-387-23081-8, September.
    3. Liu, Wei & Song, Zhaoyang, 2020. "Review of studies on the resilience of urban critical infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    4. Charani Shandiz, Saeid & Foliente, Greg & Rismanchi, Behzad & Wachtel, Amanda & Jeffers, Robert F., 2020. "Resilience framework and metrics for energy master planning of communities," Energy, Elsevier, vol. 203(C).
    5. Maria Luskova & Zdenek Dvorak, 2019. "Applying Risk Management Process in Critical Infrastructure Protection," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 17(1-A), pages 7-12.
    6. Petersen, L. & Lange, D. & Theocharidou, M., 2020. "Who cares what it means? Practical reasons for using the word resilience with critical infrastructure operators," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    7. Andrzej Bialas, 2016. "Risk Management in Critical Infrastructure—Foundation for Its Sustainable Work," Sustainability, MDPI, vol. 8(3), pages 1-24, March.
    8. Rehak, David & Senovsky, Pavel & Hromada, Martin & Lovecek, Tomas, 2019. "Complex approach to assessing resilience of critical infrastructure elements," International Journal of Critical Infrastructure Protection, Elsevier, vol. 25(C), pages 125-138.
    9. Hadi Alizadeh & Ayyoob Sharifi, 2020. "Assessing Resilience of Urban Critical Infrastructure Networks: A Case Study of Ahvaz, Iran," Sustainability, MDPI, vol. 12(9), pages 1-20, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matteo Cristofaro & Maria José Sousa & José Carlos Sanchéz-Garcia & Aron Larsson, 2021. "Contextualized Behavior for Improving Managerial and Entrepreneurial Decision-Making," Administrative Sciences, MDPI, vol. 11(1), pages 1-5, February.
    2. Fabio De Felice & Ilaria Baffo & Antonella Petrillo, 2022. "Critical Infrastructures Overview: Past, Present and Future," Sustainability, MDPI, vol. 14(4), pages 1-20, February.
    3. Adam Sulich & Letycja Sołoducho-Pelc & Marcos Ferasso, 2021. "Management Styles and Decision-Making: Pro-Ecological Strategy Approach," Sustainability, MDPI, vol. 13(4), pages 1-18, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Poulin, Craig & Kane, Michael B., 2021. "Infrastructure resilience curves: Performance measures and summary metrics," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. Hadi Alizadeh & Ayyoob Sharifi, 2020. "Assessing Resilience of Urban Critical Infrastructure Networks: A Case Study of Ahvaz, Iran," Sustainability, MDPI, vol. 12(9), pages 1-20, May.
    3. Adel Mottahedi & Farhang Sereshki & Mohammad Ataei & Ali Nouri Qarahasanlou & Abbas Barabadi, 2021. "The Resilience of Critical Infrastructure Systems: A Systematic Literature Review," Energies, MDPI, vol. 14(6), pages 1-32, March.
    4. da Silva, Fellipe Sartori & Matelli, José Alexandre, 2021. "Resilience in cogeneration systems: Metrics for evaluation and influence of design aspects," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    5. Bellè, Andrea & Abdin, Adam F. & Fang, Yi-Ping & Zeng, Zhiguo & Barros, Anne, 2023. "A data-driven distributionally robust approach for the optimal coupling of interdependent critical infrastructures under random failures," European Journal of Operational Research, Elsevier, vol. 309(2), pages 872-889.
    6. Fancello, Giovanna & Tsoukiàs, Alexis, 2021. "Learning urban capabilities from behaviours. A focus on visitors values for urban planning," Socio-Economic Planning Sciences, Elsevier, vol. 76(C).
    7. Bana e Costa, Carlos A. & Oliveira, Carlos S. & Vieira, Victor, 2008. "Prioritization of bridges and tunnels in earthquake risk mitigation using multicriteria decision analysis: Application to Lisbon," Omega, Elsevier, vol. 36(3), pages 442-450, June.
    8. Denys Yemshanov & Frank H. Koch & Yakov Ben‐Haim & Marla Downing & Frank Sapio & Marty Siltanen, 2013. "A New Multicriteria Risk Mapping Approach Based on a Multiattribute Frontier Concept," Risk Analysis, John Wiley & Sons, vol. 33(9), pages 1694-1709, September.
    9. Corrente, Salvatore & Figueira, José Rui & Greco, Salvatore, 2014. "The SMAA-PROMETHEE method," European Journal of Operational Research, Elsevier, vol. 239(2), pages 514-522.
    10. Comino, E. & Ferretti, V., 2016. "Indicators-based spatial SWOT analysis: supporting the strategic planning and management of complex territorial systems," LSE Research Online Documents on Economics 64142, London School of Economics and Political Science, LSE Library.
    11. Kaveh Madani & Laura Read & Laleh Shalikarian, 2014. "Voting Under Uncertainty: A Stochastic Framework for Analyzing Group Decision Making Problems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(7), pages 1839-1856, May.
    12. Kadziński, MiŁosz & Greco, Salvatore & SŁowiński, Roman, 2012. "Extreme ranking analysis in robust ordinal regression," Omega, Elsevier, vol. 40(4), pages 488-501.
    13. Haurant, P. & Oberti, P. & Muselli, M., 2011. "Multicriteria selection aiding related to photovoltaic plants on farming fields on Corsica island: A real case study using the ELECTRE outranking framework," Energy Policy, Elsevier, vol. 39(2), pages 676-688, February.
    14. Growiec, Jakub, 2018. "Factor-specific technology choice," Journal of Mathematical Economics, Elsevier, vol. 77(C), pages 1-14.
    15. José M. Merigó & Anna M. Gil-Lafuente & Daniel Palacios-Marqués, 2014. "A new method for fuzzy decision making under risk and uncertainty," International Journal of Business Continuity and Risk Management, Inderscience Enterprises Ltd, vol. 5(1), pages 29-42.
    16. Franceschini, Fiorenzo & Maisano, Domenico, 2015. "Checking the consistency of the solution in ordinal semi-democratic decision-making problems," Omega, Elsevier, vol. 57(PB), pages 188-195.
    17. Bouyssou, Denis & Marchant, Thierry, 2007. "An axiomatic approach to noncompensatory sorting methods in MCDM, II: More than two categories," European Journal of Operational Research, Elsevier, vol. 178(1), pages 246-276, April.
    18. Grabisch, Michel & Kojadinovic, Ivan & Meyer, Patrick, 2008. "A review of methods for capacity identification in Choquet integral based multi-attribute utility theory: Applications of the Kappalab R package," European Journal of Operational Research, Elsevier, vol. 186(2), pages 766-785, April.
    19. Dong, Kangyin & Dong, Xiucheng & Jiang, Qingzhe & Zhao, Jun, 2021. "Assessing energy resilience and its greenhouse effect: A global perspective," Energy Economics, Elsevier, vol. 104(C).
    20. Pablo Aragonés‐Beltrán & Mª. Carmen González‐Cruz & Astrid León‐Camargo & Rosario Viñoles‐Cebolla, 2023. "Assessment of regional development needs according to criteria based on the Sustainable Development Goals in the Meta Region (Colombia)," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(2), pages 1101-1121, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jadmsc:v:10:y:2020:i:3:p:75-:d:414507. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.