IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v212y2021ics0951832021000132.html
   My bibliography  Save this article

Resilience in cogeneration systems: Metrics for evaluation and influence of design aspects

Author

Listed:
  • da Silva, Fellipe Sartori
  • Matelli, José Alexandre

Abstract

Energy systems are part of the critical infrastructures, and therefore any dysfunctionality can cause reactions in crucial societal fields. The growth of unexpected events is affecting these systems and exposing their vulnerability by leading them to abrupt disruptions. Resilience is a relatively recent concept in thermal engineering field that is receiving attention due to the consideration of these low-probability high-impact situations. This work aims to keep developing a previously proposed method for resilience evaluation in energy systems by considering system recovery and contributing with new metrics. Additionally, the influence of repairing actions in resilience is investigated. All the metrics converged to the same system as the most resilient one, proving the robustness and reliability of the method and the importance of redundancy to the system design, once it is the capital difference between the analyzed configurations. The addition of repairing actions enhanced resilience of all the systems, mostly the less resilient ones. The variation of input parameters revealed that operating time is an important key to resilience evaluation. It also indicated that increasing repair probability significantly improves the resilience of systems without redundancies, revealing that improving repair conditions can be as good to resilience as considering redundancies in system design.

Suggested Citation

  • da Silva, Fellipe Sartori & Matelli, José Alexandre, 2021. "Resilience in cogeneration systems: Metrics for evaluation and influence of design aspects," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
  • Handle: RePEc:eee:reensy:v:212:y:2021:i:c:s0951832021000132
    DOI: 10.1016/j.ress.2021.107444
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021000132
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.107444?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Francis, Royce & Bekera, Behailu, 2014. "A metric and frameworks for resilience analysis of engineered and infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 90-103.
    2. Najarian, Mohammad & Lim, Gino J., 2020. "Optimizing infrastructure resilience under budgetary constraint," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    3. Gilani, Mohammad Amin & Kazemi, Ahad & Ghasemi, Mostafa, 2020. "Distribution system resilience enhancement by microgrid formation considering distributed energy resources," Energy, Elsevier, vol. 191(C).
    4. Lim, J.H. & Qu, Jian & Zuo, Ming J., 2016. "Age replacement policy based on imperfect repair with random probability," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 24-33.
    5. Matelli, José Alexandre & Goebel, Kai, 2018. "Conceptual design of cogeneration plants under a resilient design perspective: Resilience metrics and case study," Applied Energy, Elsevier, vol. 215(C), pages 736-750.
    6. Bao, Minglei & Ding, Yi & Sang, Maosheng & Li, Daqing & Shao, Changzheng & Yan, Jinyue, 2020. "Modeling and evaluating nodal resilience of multi-energy systems under windstorms," Applied Energy, Elsevier, vol. 270(C).
    7. Fang, Yiping & Sansavini, Giovanni, 2017. "Optimizing power system investments and resilience against attacks," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 161-173.
    8. Hossain, Niamat Ullah Ibne & Jaradat, Raed & Hosseini, Seyedmohsen & Marufuzzaman, Mohammad & Buchanan, Randy K., 2019. "A framework for modeling and assessing system resilience using a Bayesian network: A case study of an interdependent electrical infrastructure system," International Journal of Critical Infrastructure Protection, Elsevier, vol. 25(C), pages 62-83.
    9. Ahmadian, Navid & Lim, Gino J. & Cho, Jaeyoung & Bora, Selim, 2020. "A quantitative approach for assessment and improvement of network resilience," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    10. Kammouh, Omar & Gardoni, Paolo & Cimellaro, Gian Paolo, 2020. "Probabilistic framework to evaluate the resilience of engineering systems using Bayesian and dynamic Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    11. Ossai, Chinedu I., 2019. "Remaining useful life estimation for repairable multi-state components subjected to multiple maintenance actions," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 142-151.
    12. Kosai, Shoki & Cravioto, Jordi, 2020. "Resilience of standalone hybrid renewable energy systems: The role of storage capacity," Energy, Elsevier, vol. 196(C).
    13. Charani Shandiz, Saeid & Foliente, Greg & Rismanchi, Behzad & Wachtel, Amanda & Jeffers, Robert F., 2020. "Resilience framework and metrics for energy master planning of communities," Energy, Elsevier, vol. 203(C).
    14. Cadini, Francesco & Agliardi, Gian Luca & Zio, Enrico, 2017. "A modeling and simulation framework for the reliability/availability assessment of a power transmission grid subject to cascading failures under extreme weather conditions," Applied Energy, Elsevier, vol. 185(P1), pages 267-279.
    15. Moslehi, Salim & Reddy, T. Agami, 2018. "Sustainability of integrated energy systems: A performance-based resilience assessment methodology," Applied Energy, Elsevier, vol. 228(C), pages 487-498.
    16. Younesi, Abdollah & Shayeghi, Hossein & Safari, Amin & Siano, Pierluigi, 2020. "Assessing the resilience of multi microgrid based widespread power systems against natural disasters using Monte Carlo Simulation," Energy, Elsevier, vol. 207(C).
    17. Wang, Jing & Zuo, Wangda & Rhode-Barbarigos, Landolf & Lu, Xing & Wang, Jianhui & Lin, Yanling, 2019. "Literature review on modeling and simulation of energy infrastructures from a resilience perspective," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 360-373.
    18. Petersen, L. & Lange, D. & Theocharidou, M., 2020. "Who cares what it means? Practical reasons for using the word resilience with critical infrastructure operators," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    19. Lin, Yanling & Bie, Zhaohong, 2018. "Tri-level optimal hardening plan for a resilient distribution system considering reconfiguration and DG islanding," Applied Energy, Elsevier, vol. 210(C), pages 1266-1279.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haritha, P.C. & Anjaneyulu, M.V.L.R., 2024. "Comparison of topological functionality-based resilience metrics using link criticality," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    2. Shang, Ce & Lin, Teng & Li, Canbing & Wang, Keyou & Ai, Qian, 2021. "Joining resilience and reliability evaluation against both weather and ageing causes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Yong-Hoon Im, 2022. "Assessment of the Technological Sustainability of the Tri-Generation Model in the Era of Climate Change: A Case Study of Terminal Complexes," Energies, MDPI, vol. 15(14), pages 1-23, July.
    4. Mehrabian, M.J. & Khoshgoftar Manesh, M.H., 2023. "4E, risk, diagnosis, and availability evaluation for optimal design of a novel biomass-solar-wind driven polygeneration system," Renewable Energy, Elsevier, vol. 219(P2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adel Mottahedi & Farhang Sereshki & Mohammad Ataei & Ali Nouri Qarahasanlou & Abbas Barabadi, 2021. "The Resilience of Critical Infrastructure Systems: A Systematic Literature Review," Energies, MDPI, vol. 14(6), pages 1-32, March.
    2. Ahmadi, Somayeh & Saboohi, Yadollah & Vakili, Ali, 2021. "Frameworks, quantitative indicators, characters, and modeling approaches to analysis of energy system resilience: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    3. Mottahedi, Adel & Sereshki, Farhang & Ataei, Mohammad & Qarahasanlou, Ali Nouri & Barabadi, Abbas, 2021. "Resilience estimation of critical infrastructure systems: Application of expert judgment," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    4. Shang, Ce & Lin, Teng & Li, Canbing & Wang, Keyou & Ai, Qian, 2021. "Joining resilience and reliability evaluation against both weather and ageing causes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    5. Caputo, A.C. & Donati, L. & Salini, P., 2023. "Estimating resilience of manufacturing plants to physical disruptions: Model and application," International Journal of Production Economics, Elsevier, vol. 266(C).
    6. Wang, Jing & Zuo, Wangda & Rhode-Barbarigos, Landolf & Lu, Xing & Wang, Jianhui & Lin, Yanling, 2019. "Literature review on modeling and simulation of energy infrastructures from a resilience perspective," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 360-373.
    7. Hao, Yucheng & Jia, Limin & Zio, Enrico & Wang, Yanhui & Small, Michael & Li, Man, 2023. "Improving resilience of high-speed train by optimizing repair strategies," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    8. Younesi, Abdollah & Shayeghi, Hossein & Wang, Zongjie & Siano, Pierluigi & Mehrizi-Sani, Ali & Safari, Amin, 2022. "Trends in modern power systems resilience: State-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    9. Umunnakwe, A. & Huang, H. & Oikonomou, K. & Davis, K.R., 2021. "Quantitative analysis of power systems resilience: Standardization, categorizations, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    10. Mujjuni, F. & Betts, T. & To, L.S. & Blanchard, R.E., 2021. "Resilience a means to development: A resilience assessment framework and a catalogue of indicators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    11. Sun, Qirun & Wu, Zhi & Ma, Zhoujun & Gu, Wei & Zhang, Xiao-Ping & Lu, Yuping & Liu, Pengxiang, 2022. "Resilience enhancement strategy for multi-energy systems considering multi-stage recovery process and multi-energy coordination," Energy, Elsevier, vol. 241(C).
    12. Youba Nait Belaid & Patrick Coudray & José Sanchez-Torres & Yi-Ping Fang & Zhiguo Zeng & Anne Barros, 2021. "Resilience Quantification of Smart Distribution Networks—A Bird’s Eye View Perspective," Energies, MDPI, vol. 14(10), pages 1-29, May.
    13. Zhang, Xi & Tu, Haicheng & Guo, Jianbo & Ma, Shicong & Li, Zhen & Xia, Yongxiang & Tse, Chi Kong, 2021. "Braess paradox and double-loop optimization method to enhance power grid resilience," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    14. Zhang, Heng & Zhang, Shenxi & Cheng, Haozhong & Li, Zheng & Gu, Qingfa & Tian, Xueqin, 2022. "Boosting the power grid resilience under typhoon disasters by coordinated scheduling of wind energy and conventional generators," Renewable Energy, Elsevier, vol. 200(C), pages 303-319.
    15. Sun, Hao & Yang, Ming & Wang, Haiqing, 2022. "A virtual experiment for measuring system resilience: A case of chemical process systems," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    16. Wang, Shuliang & Gu, Xifeng & Luan, Shengyang & Zhao, Mingwei, 2021. "Resilience analysis of interdependent critical infrastructure systems considering deep learning and network theory," International Journal of Critical Infrastructure Protection, Elsevier, vol. 35(C).
    17. Poulin, Craig & Kane, Michael B., 2021. "Infrastructure resilience curves: Performance measures and summary metrics," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    18. Sang, Maosheng & Ding, Yi & Bao, Minglei & Li, Siying & Ye, Chengjin & Fang, Youtong, 2021. "Resilience-based restoration strategy optimization for interdependent gas and power networks," Applied Energy, Elsevier, vol. 302(C).
    19. Jasiūnas, Justinas & Lund, Peter D. & Mikkola, Jani, 2021. "Energy system resilience – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    20. Venkateswaran V, Balaji & Saini, Devender Kumar & Sharma, Madhu, 2021. "Techno-economic hardening strategies to enhance distribution system resilience against earthquake," Reliability Engineering and System Safety, Elsevier, vol. 213(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:212:y:2021:i:c:s0951832021000132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.