IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v198y2020ics0951832019303333.html
   My bibliography  Save this article

Probabilistic framework to evaluate the resilience of engineering systems using Bayesian and dynamic Bayesian networks

Author

Listed:
  • Kammouh, Omar
  • Gardoni, Paolo
  • Cimellaro, Gian Paolo

Abstract

Resilience indicators are a convenient tool to assess the resilience of engineering systems. They are often used in preliminary designs or in the assessment of complex systems. This paper introduces a novel approach to assess the time-dependent resilience of engineering systems using resilience indicators. A Bayesian network (BN) approach is employed to handle the relationships among the indicators. BN is known for its capability of handling causal dependencies between different variables in probabilistic terms. However, the use of BN is limited to static systems that are in a state of equilibrium. Being at equilibrium is often not the case because most engineering systems are dynamic in nature as their performance fluctuates with time, especially after disturbing events (e.g. natural disasters). Therefore, the temporal dimension is tackled in this work using the Dynamic Bayesian Network (DBN). DBN extends the classical BN by adding the time dimension. It permits the interaction among variables at different time steps. It can be used to track the evolution of a system's performance given an evidence recorded at a previous time step. This allows predicting the resilience state of a system given its initial condition. A mathematical probabilistic framework based on the DBN is developed to model the resilience of dynamic engineering systems. Two illustrative examples are presented in the paper to demonstrate the applicability of the introduced framework. One example evaluates the resilience of Brazil. The other one evaluates the resilience of a transportation system.

Suggested Citation

  • Kammouh, Omar & Gardoni, Paolo & Cimellaro, Gian Paolo, 2020. "Probabilistic framework to evaluate the resilience of engineering systems using Bayesian and dynamic Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
  • Handle: RePEc:eee:reensy:v:198:y:2020:i:c:s0951832019303333
    DOI: 10.1016/j.ress.2020.106813
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832019303333
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2020.106813?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kabir, Golam & Tesfamariam, Solomon & Francisque, Alex & Sadiq, Rehan, 2015. "Evaluating risk of water mains failure using a Bayesian belief network model," European Journal of Operational Research, Elsevier, vol. 240(1), pages 220-234.
    2. Niamat Ullah Ibne Hossain & Farjana Nur & Raed Jaradat & Seyedmohsen Hosseini & Mohammad Marufuzzaman & Stephen M. Puryear & Randy K. Buchanan, 2019. "Metrics for Assessing Overall Performance of Inland Waterway Ports: A Bayesian Network Based Approach," Complexity, Hindawi, vol. 2019, pages 1-17, May.
    3. Hosseini, Seyedmohsen & Barker, Kash & Ramirez-Marquez, Jose E., 2016. "A review of definitions and measures of system resilience," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 47-61.
    4. Mishra, Sabyasachee & Welch, Timothy F. & Jha, Manoj K., 2012. "Performance indicators for public transit connectivity in multi-modal transportation networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(7), pages 1066-1085.
    5. Hossain, Niamat Ullah Ibne & Jaradat, Raed & Hosseini, Seyedmohsen & Marufuzzaman, Mohammad & Buchanan, Randy K., 2019. "A framework for modeling and assessing system resilience using a Bayesian network: A case study of an interdependent electrical infrastructure system," International Journal of Critical Infrastructure Protection, Elsevier, vol. 25(C), pages 62-83.
    6. Jenelius, Erik, 2009. "Network structure and travel patterns: explaining the geographical disparities of road network vulnerability," Journal of Transport Geography, Elsevier, vol. 17(3), pages 234-244.
    7. Zhang, Jianhua & Xu, Xiaoming & Hong, Liu & Wang, Shuliang & Fei, Qi, 2011. "Networked analysis of the Shanghai subway network, in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4562-4570.
    8. Cox, Andrew & Prager, Fynnwin & Rose, Adam, 2011. "Transportation security and the role of resilience: A foundation for operational metrics," Transport Policy, Elsevier, vol. 18(2), pages 307-317, March.
    9. Henry, Devanandham & Emmanuel Ramirez-Marquez, Jose, 2012. "Generic metrics and quantitative approaches for system resilience as a function of time," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 114-122.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mottahedi, Adel & Sereshki, Farhang & Ataei, Mohammad & Qarahasanlou, Ali Nouri & Barabadi, Abbas, 2021. "Resilience estimation of critical infrastructure systems: Application of expert judgment," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    2. Adel Mottahedi & Farhang Sereshki & Mohammad Ataei & Ali Nouri Qarahasanlou & Abbas Barabadi, 2021. "The Resilience of Critical Infrastructure Systems: A Systematic Literature Review," Energies, MDPI, vol. 14(6), pages 1-32, March.
    3. Trucco, Paolo & Petrenj, Boris, 2023. "Characterisation of resilience metrics in full-scale applications to interdependent infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    4. Rahimi-Golkhandan, Armin & Garvin, Michael J. & Brown, Bryan L., 2019. "Characterizing and measuring transportation infrastructure diversity through linkages with ecological stability theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 128(C), pages 114-130.
    5. Milan Janić, 2018. "Modelling the resilience of rail passenger transport networks affected by large-scale disruptive events: the case of HSR (high speed rail)," Transportation, Springer, vol. 45(4), pages 1101-1137, July.
    6. Poulin, Craig & Kane, Michael B., 2021. "Infrastructure resilience curves: Performance measures and summary metrics," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    7. Gonçalves, L.A.P.J. & Ribeiro, P.J.G., 2020. "Resilience of urban transportation systems. Concept, characteristics, and methods," Journal of Transport Geography, Elsevier, vol. 85(C).
    8. MacKenzie, Cameron A. & Hu, Chao, 2019. "Decision making under uncertainty for design of resilient engineered systems," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    9. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.
    10. Hossain, Niamat Ullah Ibne & Nur, Farjana & Hosseini, Seyedmohsen & Jaradat, Raed & Marufuzzaman, Mohammad & Puryear, Stephen M., 2019. "A Bayesian network based approach for modeling and assessing resilience: A case study of a full service deep water port," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 378-396.
    11. Zhu, Chunli & Wu, Jianping & Liu, Mingyu & Luan, Jianlin & Li, Tingting & Hu, Kezhen, 2020. "Cyber-physical resilience modelling and assessment of urban roadway system interrupted by rainfall," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    12. Adjetey-Bahun, Kpotissan & Birregah, Babiga & Châtelet, Eric & Planchet, Jean-Luc, 2016. "A model to quantify the resilience of mass railway transportation systems," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 1-14.
    13. Gu, Yu & Fu, Xiao & Liu, Zhiyuan & Xu, Xiangdong & Chen, Anthony, 2020. "Performance of transportation network under perturbations: Reliability, vulnerability, and resilience," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    14. Fauzan Hanif Jufri & Jun-Sung Kim & Jaesung Jung, 2017. "Analysis of Determinants of the Impact and the Grid Capability to Evaluate and Improve Grid Resilience from Extreme Weather Event," Energies, MDPI, vol. 10(11), pages 1-17, November.
    15. Yang, Bofan & Zhang, Lin & Zhang, Bo & Xiang, Yang & An, Lei & Wang, Wenfeng, 2022. "Complex equipment system resilience: Composition, measurement and element analysis," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    16. Noguchi, Hiroki & Fuse, Masaaki, 2020. "Rethinking critical node problem for railway networks from the perspective of turn-back operation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    17. Zobel, Christopher W. & Baghersad, Milad, 2020. "Analytically comparing disaster resilience across multiple dimensions," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    18. Zeng, Zhiguo & Fang, Yi-Ping & Zhai, Qingqing & Du, Shijia, 2021. "A Markov reward process-based framework for resilience analysis of multistate energy systems under the threat of extreme events," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    19. Mohamad Darayi & Kash Barker & Joost R. Santos, 2017. "Component Importance Measures for Multi-Industry Vulnerability of a Freight Transportation Network," Networks and Spatial Economics, Springer, vol. 17(4), pages 1111-1136, December.
    20. Sun, Daniel (Jian) & Guan, Shituo, 2016. "Measuring vulnerability of urban metro network from line operation perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 348-359.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:198:y:2020:i:c:s0951832019303333. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.