IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Extreme ranking analysis in robust ordinal regression

  • Kadziński, MiŁosz
  • Greco, Salvatore
  • SŁowiński, Roman
Registered author(s):

    We extend the principle of robust ordinal regression with an analysis of extreme ranking results. In our proposal, we consider the whole set of instances of a preference model that is compatible with preference information provided by the DM. We refer to both, the well-known UTAGMS method, which builds the set of general additive value functions compatible with DM's preferences, and newly introduced in this paper PROMETHEEGKS, which constructs the set of compatible outranking models via robust ordinal regression. Then, we consider all complete rankings that follow the use of the compatible preference models, and we determine the best and the worst attained ranks for each alternative. In this way, we are able to assess its position in an overall ranking, and not only in terms of pairwise comparisons, as it is the case in original robust ordinal regression methods. Additionally, we analyze the ranges of possible comprehensive scores (values or net outranking flows). We also discuss extensions of the presented approach on other multiple criteria problems than ranking. Finally, we show how the presented methodology can be applied in practical decision support, reporting results of three illustrative studies.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S030504831100140X
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Omega.

    Volume (Year): 40 (2012)
    Issue (Month): 4 ()
    Pages: 488-501

    as
    in new window

    Handle: RePEc:eee:jomega:v:40:y:2012:i:4:p:488-501
    Contact details of provider: Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description

    Order Information: Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
    Web: https://shop.elsevier.com/order?id=375&ref=375_01_ooc_1&version=01

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:40:y:2012:i:4:p:488-501. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.