IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v47y2013icp153-166.html
   My bibliography  Save this article

Comprehensive evaluation of energy conservation and emission reduction policies

Author

Listed:
  • Litman, Todd

Abstract

Various transportation policies can help conserve energy and reduce pollution emissions. Some, called cleaner vehicle strategies in this article, reduce emission rates per vehicle-kilometer. Others, called mobility management (also called transportation demand management) strategies, reduce total vehicle travel. There is disagreement concerning which approach is best overall. Some studies conclude that cleaner vehicle strategies are generally most cost effective and beneficial, while others favor mobility management strategies. These different conclusions tend to reflect different analysis scope. Analyses that favor clean vehicle strategies tend to overlook or undervalue some significant impacts including cleaner vehicle rebound effects and mobility management co-benefits. More comprehensive analysis tends to favor mobility management. This article investigates these issues and provides specific recommendations for comprehensive evaluation.

Suggested Citation

  • Litman, Todd, 2013. "Comprehensive evaluation of energy conservation and emission reduction policies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 47(C), pages 153-166.
  • Handle: RePEc:eee:transa:v:47:y:2013:i:c:p:153-166
    DOI: 10.1016/j.tra.2012.10.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856412001619
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2012.10.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Philippe Barla & Bernard Lamonde & Luis Miranda-Moreno & Nathalie Boucher, 2009. "Traveled distance, stock and fuel efficiency of private vehicles in Canada: price elasticities and rebound effect," Transportation, Springer, vol. 36(4), pages 389-402, July.
    2. Ross Morrow, W. & Gallagher, Kelly Sims & Collantes, Gustavo & Lee, Henry, 2010. "Analysis of policies to reduce oil consumption and greenhouse-gas emissions from the US transportation sector," Energy Policy, Elsevier, vol. 38(3), pages 1305-1320, March.
    3. Daniel J. Graham, 2007. "Agglomeration Economies and Transport Investment," OECD/ITF Joint Transport Research Centre Discussion Papers 2007/11, OECD Publishing.
    4. Moore, Adrian T. & Staley, Samuel R. & Poole Jr., Robert W., 2010. "The role of VMT reduction in meeting climate change policy goals," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(8), pages 565-574, October.
    5. Hymel, Kent M. & Small, Kenneth A. & Dender, Kurt Van, 2010. "Induced demand and rebound effects in road transport," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1220-1241, December.
    6. Delucchi, Mark A., 1996. "Total Cost of Motor-Vehicle Use," University of California Transportation Center, Working Papers qt82k9q9w1, University of California Transportation Center.
    7. Ian W. H. Parry & Margaret Walls & Winston Harrington, 2007. "Automobile Externalities and Policies," Journal of Economic Literature, American Economic Association, vol. 45(2), pages 373-399, June.
    8. Litman, Todd, 2005. "Efficient vehicles versus efficient transportation. Comparing transportation energy conservation strategies," Transport Policy, Elsevier, vol. 12(2), pages 121-129, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali Keyvanfar & Arezou Shafaghat & Nasiru Zakari Muhammad & M. Salim Ferwati, 2018. "Driving Behaviour and Sustainable Mobility—Policies and Approaches Revisited," Sustainability, MDPI, vol. 10(4), pages 1-27, April.
    2. Bishop, Justin D.K. & Martin, Niall P.D. & Boies, Adam M., 2016. "Quantifying the role of vehicle size, powertrain technology, activity and consumer behaviour on new UK passenger vehicle fleet energy use and emissions under different policy objectives," Applied Energy, Elsevier, vol. 180(C), pages 196-212.
    3. Zheng, Shiming & Yi, Hongtao & Li, Hui, 2015. "The impacts of provincial energy and environmental policies on air pollution control in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 386-394.
    4. Sofia, Daniele & Gioiella, Filomena & Lotrecchiano, Nicoletta & Giuliano, Aristide, 2020. "Cost-benefit analysis to support decarbonization scenario for 2030: A case study in Italy," Energy Policy, Elsevier, vol. 137(C).
    5. Farid, Amro M. & Jiang, Bo & Muzhikyan, Aramazd & Youcef-Toumi, Kamal, 2016. "The need for holistic enterprise control assessment methods for the future electricity grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 669-685.
    6. Liu, Xue & Ma, Shoufeng & Tian, Junfang & Jia, Ning & Li, Geng, 2015. "A system dynamics approach to scenario analysis for urban passenger transport energy consumption and CO2 emissions: A case study of Beijing," Energy Policy, Elsevier, vol. 85(C), pages 253-270.
    7. Wang, Yihan & Chen, Chen & Tao, Yuan & Wen, Zongguo & Chen, Bin & Zhang, Hong, 2019. "A many-objective optimization of industrial environmental management using NSGA-III: A case of China’s iron and steel industry," Applied Energy, Elsevier, vol. 242(C), pages 46-56.
    8. Dedinec, Aleksandar & Markovska, Natasa & Taseska, Verica & Duic, Neven & Kanevce, Gligor, 2013. "Assessment of climate change mitigation potential of the Macedonian transport sector," Energy, Elsevier, vol. 57(C), pages 177-187.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimitropoulos, Alexandros & Oueslati, Walid & Sintek, Christina, 2018. "The rebound effect in road transport: A meta-analysis of empirical studies," Energy Economics, Elsevier, vol. 75(C), pages 163-179.
    2. Litman, Todd, 2013. "Changing North American vehicle-travel price sensitivities: Implications for transport and energy policy," Transport Policy, Elsevier, vol. 28(C), pages 2-10.
    3. Ali Keyvanfar & Arezou Shafaghat & Nasiru Zakari Muhammad & M. Salim Ferwati, 2018. "Driving Behaviour and Sustainable Mobility—Policies and Approaches Revisited," Sustainability, MDPI, vol. 10(4), pages 1-27, April.
    4. Proost, Stef & Van Dender, Kurt, 2012. "Energy and environment challenges in the transport sector," Economics of Transportation, Elsevier, vol. 1(1), pages 77-87.
    5. De Borger, Bruno & Mulalic, Ismir & Rouwendal, Jan, 2016. "Measuring the rebound effect with micro data: A first difference approach," Journal of Environmental Economics and Management, Elsevier, vol. 79(C), pages 1-17.
    6. Whistance, Jarrett & Thompson, Wyatt, 2014. "The role of CAFE standards and alternative-fuel vehicle production credits in U.S. biofuels markets," Energy Policy, Elsevier, vol. 74(C), pages 147-157.
    7. Moshiri, Saeed & Aliyev, Kamil, 2017. "Rebound effect of efficiency improvement in passenger cars on gasoline consumption in Canada," Ecological Economics, Elsevier, vol. 131(C), pages 330-341.
    8. Jenn, Alan & Azevedo, Inês L. & Michalek, Jeremy J., 2019. "Alternative-fuel-vehicle policy interactions increase U.S. greenhouse gas emissions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 396-407.
    9. Sylvain Weber & Mehdi Farsi, 2014. "Travel distance, fuel efficiency, and vehicle weight: An estimation of the rebound effect using individual data in Switzerland," IRENE Working Papers 14-03, IRENE Institute of Economic Research.
    10. Manuel Frondel & Colin Vance, 2018. "Drivers’ response to fuel taxes and efficiency standards: evidence from Germany," Transportation, Springer, vol. 45(3), pages 989-1001, May.
    11. Cook, Jonathan A. & Sanchirico, James N. & Salon, Deborah & Williams, Jeffrey, 2015. "Empirical distributions of vehicle use and fuel efficiency across space: Implications of asymmetry for measuring policy incidence," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 187-199.
    12. Moshiri, Saeed, 2020. "Consumer responses to gasoline price and non-price policies," Energy Policy, Elsevier, vol. 137(C).
    13. Yeh, Sonia & Burtraw, Dallas & Sterner, Thomas & Greene, David, 2021. "Tradable performance standards in the transportation sector," Energy Economics, Elsevier, vol. 102(C).
    14. Georg Hirte & Stefan Tscharaktschiew, 2015. "Optimal Fuel Taxes and Heterogeneity of Cities," Review of Regional Research: Jahrbuch für Regionalwissenschaft, Springer;Gesellschaft für Regionalforschung (GfR), vol. 35(2), pages 173-209, October.
    15. Antonio Bento & Daniel Kaffine & Kevin Roth & Matthew Zaragoza-Watkins, 2014. "The Effects of Regulation in the Presence of Multiple Unpriced Externalities: Evidence from the Transportation Sector," American Economic Journal: Economic Policy, American Economic Association, vol. 6(3), pages 1-29, August.
    16. Tscharaktschiew, Stefan, 2020. "Why are highway speed limits really justified? An equilibrium speed choice analysis," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 317-351.
    17. Tscharaktschiew, Stefan, 2014. "Shedding light on the appropriateness of the (high) gasoline tax level in Germany," Economics of Transportation, Elsevier, vol. 3(3), pages 189-210.
    18. Lu-Yi Qiu & Ling-Yun He, 2017. "Are Chinese Green Transport Policies Effective? A New Perspective from Direct Pollution Rebound Effect, and Empirical Evidence From the Road Transport Sector," Sustainability, MDPI, vol. 9(3), pages 1-11, March.
    19. Jonathan E. Hughes & Daniel Kaffine, 2013. "When is Encouraging Consumption of Common Property Second Best? Sorting, Congestion and Entry in the Commons," Working Papers 2013-05, Colorado School of Mines, Division of Economics and Business.
    20. Lu-Yi Qiu & Ling-Yun He, 2016. "Are Chinese transport policies effective? A new perspective from direct pollution rebound effect, and empirical evidence from road transport sector," Papers 1612.02653, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:47:y:2013:i:c:p:153-166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.