IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v46y2012i2p348-367.html
   My bibliography  Save this article

Virtual reality simulation game approach to investigate transport adaptive capacity for peak oil planning

Author

Listed:
  • Watcharasukarn, Montira
  • Page, Shannon
  • Krumdieck, Susan

Abstract

The peak and decline of world oil production is an emerging issue for transportation and urban planners. Peak oil from an energy perspective means that there will be progressively less fuel. Our work treats changes in oil supply as a risk to transport activity systems. A virtual reality survey method, based on the sim game concept, has been developed to audit the participant’s normal weekly travel activity, and to explore participant’s travel adaptive capacity. The travel adaptive capacity assessment (TACA) Sim survey uses avatars, Google Map™, 2D scenes, interactive screens and feedback scores. Travel adaptive capacity is proposed as a measure of long-range resilience of activity systems to fuel supply decline. Mode adaptive potential is proposed as an indicator of the future demand growth for less energy intensive travel. Both adaptation indicators can be used for peak oil vulnerability assessment. A case study was conducted involving 90 participants in Christchurch New Zealand. All of the participants were students, general staff or academics at the University of Canterbury. The adaptive capacity was assessed by both simulated extreme fuel price shock and by asking, “do you have an alternative mode?” without price pressure. The travel adaptive capacity in number of kilometers was 75% under a 5-fold fuel price increase. The mode adaptive potential was 33% cycling, 21% walking and 22% bus. Academics had adaptive capacity of only 1–5% of trips by canceling or carrying out their activity from home compared to 10–18% for students.

Suggested Citation

  • Watcharasukarn, Montira & Page, Shannon & Krumdieck, Susan, 2012. "Virtual reality simulation game approach to investigate transport adaptive capacity for peak oil planning," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(2), pages 348-367.
  • Handle: RePEc:eee:transa:v:46:y:2012:i:2:p:348-367
    DOI: 10.1016/j.tra.2011.10.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856411001571
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2011.10.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kurani, Kenneth S & Turrentine, Tom & Sperling, Daniel, 1994. "Demand for electric vehicles in hybrid households: an exploratory analysis," Transport Policy, Elsevier, vol. 1(4), pages 244-256, October.
    2. Höök, Mikael & Hirsch, Robert & Aleklett, Kjell, 2009. "Giant oil field decline rates and their influence on world oil production," Energy Policy, Elsevier, vol. 37(6), pages 2262-2272, June.
    3. Kingham, S. & Dickinson, J. & Copsey, S, 2001. "Travelling to work: will people move out of their cars," Transport Policy, Elsevier, vol. 8(2), pages 151-160, April.
    4. Kurani, Kenneth S. & Turrentine, Tom & Sperling, Daniel, 1994. "Demand for Electric Vehicles in Hybrid Households: An Exploratory Analysis," University of California Transportation Center, Working Papers qt1c29r4hr, University of California Transportation Center.
    5. Sean Doherty & Eric Miller, 2000. "A computerized household activity scheduling survey," Transportation, Springer, vol. 27(1), pages 75-97, February.
    6. Sean Puckett & David Hensher & John Rose & Andrew Collins, 2007. "Design and development of a stated choice experiment for interdependent agents: accounting for interactions between buyers and sellers of urban freight services," Transportation, Springer, vol. 34(4), pages 429-451, July.
    7. Bruno Faivre d'Arcier & Odile Andan & Charles Raux, 1998. "Stated adaptation surveys and choice process: Some methodological issues," Post-Print halshs-00139993, HAL.
    8. Zephyr, 2010. "The city," City, Taylor & Francis Journals, vol. 14(1-2), pages 154-155, February.
    9. Lee, Ming-Sheng, 2001. "Experiments With A Computerized Self-Administrative Activity Survey," University of California Transportation Center, Working Papers qt55h7r7x0, University of California Transportation Center.
    10. Aleklett, Kjell & Höök, Mikael & Jakobsson, Kristofer & Lardelli, Michael & Snowden, Simon & Söderbergh, Bengt, 2010. "The Peak of the Oil Age - Analyzing the world oil production Reference Scenario in World Energy Outlook 2008," Energy Policy, Elsevier, vol. 38(3), pages 1398-1414, March.
    11. Handy, Susan & Weston, Lisa & Mokhtarian, Patricia L., 2005. "Driving by choice or necessity?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(2-3), pages 183-203.
    12. Krumdieck, Susan & Page, Shannon & Dantas, André, 2010. "Urban form and long-term fuel supply decline: A method to investigate the peak oil risks to essential activities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(5), pages 306-322, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Isabel Andrade & Johann Land & Patricio Gallardo & Susan Krumdieck, 2022. "Application of the InTIME Methodology for the Transition of Office Buildings to Low Carbon—A Case Study," Sustainability, MDPI, vol. 14(19), pages 1-17, September.
    2. Solaymani, Saeed & Kari, Fatimah, 2013. "Environmental and economic effects of high petroleum prices on transport sector," Energy, Elsevier, vol. 60(C), pages 435-441.
    3. Patricio Gallardo & Rua Murray & Susan Krumdieck, 2021. "A Sequential Optimization-Simulation Approach for Planning the Transition to the Low Carbon Freight System with Case Study in the North Island of New Zealand," Energies, MDPI, vol. 14(11), pages 1-24, June.
    4. Klepikov, Vladimir Pavlovich & Klepikov, Vladimir Vladimirovich, 2020. "Quantitative approach to estimating crude oil supply in Southern Europe," Resources Policy, Elsevier, vol. 69(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patricia Lejoux & Charles Raux, 2011. "Travellers’attitudes and reactions towards a carbon tax or fuel quotas: results of a qualitative research [Attitudes et changements de comportement de mobilité des ménages face à l’instauration de ," Post-Print halshs-01077172, HAL.
    2. Williams, Brett D, 2010. "Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management," University of California Transportation Center, Working Papers qt15f9495j, University of California Transportation Center.
    3. Chéron, Emmanuel & Zins, Michel, 1997. "Electric vehicle purchasing intentions: The concern over battery charge duration," Transportation Research Part A: Policy and Practice, Elsevier, vol. 31(3), pages 235-243, May.
    4. Heffner, Reid R., 2007. "Semiotics and Advanced Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Why it Matters to Consumers," Institute of Transportation Studies, Working Paper Series qt9mw1t4w3, Institute of Transportation Studies, UC Davis.
    5. Xuan Liu & John M. Usher, 2016. "Modeling air passengers’ rescheduling strategies for airport service lines based on an empirical study with the aid of a virtual 3-D computer graphic environment," Public Transport, Springer, vol. 8(1), pages 57-84, March.
    6. Petschnig, Martin & Heidenreich, Sven & Spieth, Patrick, 2014. "Innovative alternatives take action – Investigating determinants of alternative fuel vehicle adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 61(C), pages 68-83.
    7. Axsen, Jonn & Kurani, Kenneth S., 2013. "Hybrid, plug-in hybrid, or electric—What do car buyers want?," Energy Policy, Elsevier, vol. 61(C), pages 532-543.
    8. Williams, Brett D, 2007. "Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management," Institute of Transportation Studies, Working Paper Series qt4kv151dp, Institute of Transportation Studies, UC Davis.
    9. Wesche, Julius P. & Plötz, Patrick & Dütschke, Elisabeth, 2016. "How to trigger mass market adoption of electric vehicles? Factors predicting interest in electric vehicles in Germany," Working Papers "Sustainability and Innovation" S07/2016, Fraunhofer Institute for Systems and Innovation Research (ISI).
    10. Williams, Brett D, 2007. "Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management," Institute of Transportation Studies, Working Paper Series qt16k010cq, Institute of Transportation Studies, UC Davis.
    11. Anders F. Jensen & Elisabetta Cherchi & Stefan L. Mabit & Juan de Dios Ortúzar, 2017. "Predicting the Potential Market for Electric Vehicles," Transportation Science, INFORMS, vol. 51(2), pages 427-440, May.
    12. Warrilow, David, 2015. "A bumpy road to the top: Statistically defining a peak in oil production," Energy Policy, Elsevier, vol. 82(C), pages 81-84.
    13. Abbanat, Brian A., 2001. "Alternative Fuel Vehicles: The Case of Compressed Natural Gas (CNG) Vehicles in California Households," Institute of Transportation Studies, Working Paper Series qt13q9r34w, Institute of Transportation Studies, UC Davis.
    14. Abdelaziz Mahrez & Sami Said Al Wahibi, 2014. "Assessment of the public's perceptions about the transport services in Oman," Proceedings of International Academic Conferences 0100384, International Institute of Social and Economic Sciences.
    15. Turrentine, Thomas S. & Kurani, Kenneth S., 2007. "Car buyers and fuel economy?," Energy Policy, Elsevier, vol. 35(2), pages 1213-1223, February.
    16. Lovelace, R. & Beck, S.B.M. & Watson, M. & Wild, A., 2011. "Assessing the energy implications of replacing car trips with bicycle trips in Sheffield, UK," Energy Policy, Elsevier, vol. 39(4), pages 2075-2087, April.
    17. Kempton, Willett & Kubo, Toru, 2000. "Electric-drive vehicles for peak power in Japan," Energy Policy, Elsevier, vol. 28(1), pages 9-18, January.
    18. Kurani, Kenneth S. & Turrentine, Thomas & Sperling, Daniel, 2001. "Testing Electric Vehicle Demand in "Hybrid Households" Using a Reflexive Survey," University of California Transportation Center, Working Papers qt0xf006kd, University of California Transportation Center.
    19. Danielis, Romeo & Scorrano, Mariangela & Giansoldati, Marco & Rotaris, Lucia, 2019. "A meta-analysis of the importance of the driving range in consumers’ preference studies for battery electric vehicles," Working Papers 19_2, SIET Società Italiana di Economia dei Trasporti e della Logistica.
    20. Martin, Elliot & Shaheen, Susan & Lipman, Timothy & Lidicker, Jeffery, 2008. "Behavioral Response to Hydrogen Fuel Cell Vehicles and Refueling: A Comparative Analysis of Short- and Long-Term Exposure," Institute of Transportation Studies, Working Paper Series qt8nv3g1k3, Institute of Transportation Studies, UC Davis.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:46:y:2012:i:2:p:348-367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.