IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v45y2011i7p696-705.html
   My bibliography  Save this article

Forecasting ridership for a metropolitan transit authority

Author

Listed:
  • Chiang, Wen-Chyuan
  • Russell, Robert A.
  • Urban, Timothy L.

Abstract

The recent volatility in gasoline prices and the economic downturn have made the management of public transportation systems particularly challenging. Accurate forecasts of ridership are necessary for the planning and operation of transit services. In this paper, monthly ridership of the Metropolitan Tulsa Transit Authority is analyzed to identify the relevant factors that influence transit use. Alternative forecasting models are also developed and evaluated based on these factors--using regression analysis (with autoregressive error correction), neural networks, and ARIMA models--to predict transit ridership. It is found that a simple combination of these forecasting methodologies yields greater forecast accuracy than the individual models separately. Finally, a scenario analysis is conducted to assess the impact of transit policies on long-term ridership.

Suggested Citation

  • Chiang, Wen-Chyuan & Russell, Robert A. & Urban, Timothy L., 2011. "Forecasting ridership for a metropolitan transit authority," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(7), pages 696-705, August.
  • Handle: RePEc:eee:transa:v:45:y:2011:i:7:p:696-705
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856411000814
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
    2. Wang, George H. K. & Skinner, David, 1984. "The impact of fare and gasoline price changes on monthly transit ridership: Empirical evidence from seven U.S. transit authorities," Transportation Research Part B: Methodological, Elsevier, vol. 18(1), pages 29-41, February.
    3. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, Elsevier.
    4. Zhang, G. Peter & Qi, Min, 2005. "Neural network forecasting for seasonal and trend time series," European Journal of Operational Research, Elsevier, vol. 160(2), pages 501-514, January.
    5. Robert Engle, 2001. "GARCH 101: The Use of ARCH/GARCH Models in Applied Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 157-168, Fall.
    6. Chiang, W. -C. & Urban, T. L. & Baldridge, G. W., 1996. "A neural network approach to mutual fund net asset value forecasting," Omega, Elsevier, vol. 24(2), pages 205-215, April.
    7. Taylor, Brian D. & Fink, Camille N.Y., 2003. "The Factors Influencing Transit Ridership: A Review and Analysis of the Ridership Literature," University of California Transportation Center, Working Papers qt3xk9j8m2, University of California Transportation Center.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fullerton, Thomas M. Jr & Walke, Adam G., 2012. "Border Zone Mass Transit Demand in Brownsville and Laredo," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 51(2).
    2. Jinbao Zhao & Wei Deng & Yan Song & Yueran Zhu, 2014. "Analysis of Metro ridership at station level and station-to-station level in Nanjing: an approach based on direct demand models," Transportation, Springer, vol. 41(1), pages 133-155, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:45:y:2011:i:7:p:696-705. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.