IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Is there an Optimal Forecast Combination? A Stochastic Dominance Approach to Forecast Combination Puzzle

  • Mehmet Pinar


    (University of Guelph; Fondazione Eni Enrico Mattei)

  • Thanasis Stengos


    (University of Guelph)

  • M. Ege Yazgan


    (Istanbul Bilgi University)

The forecast combination puzzle refers to the finding that a simple average forecast combination outperforms more sophisticated weighting schemes and/or the best individual model. The paper derives optimal (worst) forecast combinations based on stochastic dominance (SD) analysis with differential forecast weights. For the optimal (worst) forecast combination, this index will minimize (maximize) forecasts errors by combining time-series model based forecasts at a given probability level. By weighting each forecast differently, we find the optimal (worst) forecast combination that does not rely on arbitrary weights. Using two exchange rate series on weekly data for the Japanese Yen/U.S. Dollar and U.S. Dollar/Great Britain Pound for the period from 1975 to 2010 we find that the simple average forecast combination is neither the worst nor the best forecast combination something that provides partial support for the forecast combination puzzle. In that context, the random walk model is the model that consistently contributes with considerably more than an equal weight to the worst forecast combination for all variables being forecasted and for all forecast horizons, whereas a flexible Neural Network autoregressive model and a self-exciting threshold autoregressive model always enter the best forecast combination with much greater than equal weights.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by The Rimini Centre for Economic Analysis in its series Working Paper Series with number 17_12.

in new window

Date of creation: Jun 2012
Date of revision:
Handle: RePEc:rim:rimwps:17_12
Contact details of provider: Postal:
Via Patara, 3, 47921 Rimini (RN)

Phone: +390541434142
Fax: +39054155431
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
  2. Clements, M.P. & Franses, Ph.H.B.F. & Smith, J., 1999. "On SETAR non- linearity and forecasting," Econometric Institute Research Papers EI 9914-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  3. Anderson, Gordon, 1996. "Nonparametric Tests of Stochastic Dominance in Income Distributions," Econometrica, Econometric Society, vol. 64(5), pages 1183-93, September.
  4. Graham Elliott & Allan Timmermann, 2005. "Optimal Forecast Combination Under Regime Switching ," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 46(4), pages 1081-1102, November.
  5. Oliver Linton & Esfandiar Maasoumi & Yoon-Jae Whang, 2003. "Consistent testing for stochastic dominance under general sampling schemes," LSE Research Online Documents on Economics 2208, London School of Economics and Political Science, LSE Library.
  6. Russell Davidson & Jean-Yves Duclos, 2000. "Statistical Inference for Stochastic Dominance and for the Measurement of Poverty and Inequality," Econometrica, Econometric Society, vol. 68(6), pages 1435-1464, November.
  7. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, Elsevier.
  8. Massimiliano Marcellino & James Stock & Mark Watson, 2005. "A Comparison of Direct and Iterated Multistep AR Methods for Forecasting Macroeconomic Time Series," Working Papers 285, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  9. Elliott, Graham & Timmermann, Allan G, 2007. "Economic Forecasting," CEPR Discussion Papers 6158, C.E.P.R. Discussion Papers.
  10. Nikolas Topaloglou & Olivier Scaillet & University of Geneva, 2006. "Testing foe Stochastic Dominance Efficiency," Computing in Economics and Finance 2006 74, Society for Computational Economics.
  11. Anders Bredahl Kock & Timo Teräsvirta, 2010. "Forecasting with nonlinear time series models," CREATES Research Papers 2010-01, Department of Economics and Business Economics, Aarhus University.
  12. Clements,Michael & Hendry,David, 1998. "Forecasting Economic Time Series," Cambridge Books, Cambridge University Press, number 9780521632423, November.
  13. De Gooijer, Jan G. & De Bruin, Paul T., 1998. "On forecasting SETAR processes," Statistics & Probability Letters, Elsevier, vol. 37(1), pages 7-14, January.
  14. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
  15. Garry F. Barrett & Stephen G. Donald, 2003. "Consistent Tests for Stochastic Dominance," Econometrica, Econometric Society, vol. 71(1), pages 71-104, January.
  16. Jeremy Smith & Kenneth F. Wallis, 2009. "A Simple Explanation of the Forecast Combination Puzzle," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(3), pages 331-355, 06.
  17. Charles M. Beach & Russell Davidson, 1983. "Distribution-Free Statistical Inference with Lorenz Curves and Income Shares," Review of Economic Studies, Oxford University Press, vol. 50(4), pages 723-735.
  18. Huiyu Huang & Tae-Hwy Lee, 2010. "To Combine Forecasts or to Combine Information?," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 534-570.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:rim:rimwps:17_12. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Marco Savioli)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.