IDEAS home Printed from https://ideas.repec.org/p/rim/rimwps/17_12.html
   My bibliography  Save this paper

Is there an Optimal Forecast Combination? A Stochastic Dominance Approach to Forecast Combination Puzzle

Author

Listed:
  • Mehmet Pinar

    () (University of Guelph; Fondazione Eni Enrico Mattei)

  • Thanasis Stengos

    () (University of Guelph)

  • M. Ege Yazgan

    () (Istanbul Bilgi University)

Abstract

The forecast combination puzzle refers to the finding that a simple average forecast combination outperforms more sophisticated weighting schemes and/or the best individual model. The paper derives optimal (worst) forecast combinations based on stochastic dominance (SD) analysis with differential forecast weights. For the optimal (worst) forecast combination, this index will minimize (maximize) forecasts errors by combining time-series model based forecasts at a given probability level. By weighting each forecast differently, we find the optimal (worst) forecast combination that does not rely on arbitrary weights. Using two exchange rate series on weekly data for the Japanese Yen/U.S. Dollar and U.S. Dollar/Great Britain Pound for the period from 1975 to 2010 we find that the simple average forecast combination is neither the worst nor the best forecast combination something that provides partial support for the forecast combination puzzle. In that context, the random walk model is the model that consistently contributes with considerably more than an equal weight to the worst forecast combination for all variables being forecasted and for all forecast horizons, whereas a flexible Neural Network autoregressive model and a self-exciting threshold autoregressive model always enter the best forecast combination with much greater than equal weights.

Suggested Citation

  • Mehmet Pinar & Thanasis Stengos & M. Ege Yazgan, 2012. "Is there an Optimal Forecast Combination? A Stochastic Dominance Approach to Forecast Combination Puzzle," Working Paper series 17_12, Rimini Centre for Economic Analysis.
  • Handle: RePEc:rim:rimwps:17_12
    as

    Download full text from publisher

    File URL: http://www.rcea.org/RePEc/pdf/wp17_12.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2006. "A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 499-526.
    2. Graham Elliott & Allan Timmermann, 2016. "Economic Forecasting," Economics Books, Princeton University Press, edition 1, number 10740, June.
    3. Scaillet, Olivier & Topaloglou, Nikolas, 2010. "Testing for Stochastic Dominance Efficiency," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 169-180.
    4. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, Elsevier.
    5. Clements,Michael & Hendry,David, 1998. "Forecasting Economic Time Series," Cambridge Books, Cambridge University Press, number 9780521634809, Fall.
    6. Russell Davidson & Jean-Yves Duclos, 2000. "Statistical Inference for Stochastic Dominance and for the Measurement of Poverty and Inequality," Econometrica, Econometric Society, vol. 68(6), pages 1435-1464, November.
    7. Charles M. Beach & Russell Davidson, 1983. "Distribution-Free Statistical Inference with Lorenz Curves and Income Shares," Review of Economic Studies, Oxford University Press, vol. 50(4), pages 723-735.
    8. Oliver Linton & Esfandiar Maasoumi & Yoon-Jae Whang, 2005. "Consistent Testing for Stochastic Dominance under General Sampling Schemes," Review of Economic Studies, Oxford University Press, vol. 72(3), pages 735-765.
    9. De Gooijer, Jan G. & De Bruin, Paul T., 1998. "On forecasting SETAR processes," Statistics & Probability Letters, Elsevier, vol. 37(1), pages 7-14, January.
    10. Garry F. Barrett & Stephen G. Donald, 2003. "Consistent Tests for Stochastic Dominance," Econometrica, Econometric Society, vol. 71(1), pages 71-104, January.
    11. Huiyu Huang & Tae-Hwy Lee, 2010. "To Combine Forecasts or to Combine Information?," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 534-570.
    12. Graham Elliott & Allan Timmermann, 2005. "Optimal Forecast Combination Under Regime Switching ," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 46(4), pages 1081-1102, November.
    13. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
    14. Dick van Dijk & Philip Hans Franses & Michael P. Clements & Jeremy Smith, 2003. "On SETAR non-linearity and forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(5), pages 359-375.
    15. Anderson, Gordon, 1996. "Nonparametric Tests of Stochastic Dominance in Income Distributions," Econometrica, Econometric Society, vol. 64(5), pages 1183-1193, September.
    16. Jeremy Smith & Kenneth F. Wallis, 2009. "A Simple Explanation of the Forecast Combination Puzzle," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(3), pages 331-355, June.
    17. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
    18. Anders Bredahl Kock & Timo Teräsvirta, 2010. "Forecasting with nonlinear time series models," CREATES Research Papers 2010-01, Department of Economics and Business Economics, Aarhus University.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Nonparametric Stochastic Dominance; Mixed Integer Programming; Forecast combinations; Forecast combination puzzle;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • G01 - Financial Economics - - General - - - Financial Crises

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rim:rimwps:17_12. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Marco Savioli). General contact details of provider: http://edirc.repec.org/data/rcfeait.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.