IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v181y2022ics004016252200275x.html
   My bibliography  Save this article

How much hydrogen should be supplied in the transportation market? Focusing on hydrogen fuel cell vehicle demand in South Korea

Author

Listed:
  • Park, Changeun
  • Lim, Sesil
  • Shin, Jungwoo
  • Lee, Chul-Yong

Abstract

Since the Paris Agreement, there has been a global, active transition from internal combustion engine to alternative-fuel vehicles. Accordingly, countries have established long-term low-carbon development strategies, and the transport sector has developed strategies to adopt hydrogen fuel cell electric vehicles (HFCVs). South Korea has also established policies to revitalize the hydrogen ecosystem and increase the adoption of HFCVs. However, although the country has proposed a HFCV diffusion plan and a target, there has been no adequate hydrogen supply plan. Prior to the diffusion of HFCVs, it is necessary to establish a hydrogen supply plan and forecast hydrogen demand. Thus, this study forecast the demand for HFCVs using the Bass, logistic, and Gompertz models, and the analogy method. The demand for HFCVs in 2040 was then forecast for three scenarios by altering the diffusion rate, and the annual hydrogen demand and daily hydrogen demand per charging station were forecasted. The results show that the daily hydrogen demand per hydrogen station is expected to reach 1 to 2.3 tons by 2040. These findings can be used to establish policies to expand the capacity and infrastructure of hydrogen stations.

Suggested Citation

  • Park, Changeun & Lim, Sesil & Shin, Jungwoo & Lee, Chul-Yong, 2022. "How much hydrogen should be supplied in the transportation market? Focusing on hydrogen fuel cell vehicle demand in South Korea," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
  • Handle: RePEc:eee:tefoso:v:181:y:2022:i:c:s004016252200275x
    DOI: 10.1016/j.techfore.2022.121750
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S004016252200275X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2022.121750?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Youlin & Qian, Lixian & Tyfield, David & Soopramanien, Didier, 2021. "On the heterogeneity in consumer preferences for electric vehicles across generations and cities in China," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    2. Shin, Jungwoo & Hwang, Won-Sik & Choi, Hyundo, 2019. "Can hydrogen fuel vehicles be a sustainable alternative on vehicle market?: Comparison of electric and hydrogen fuel cell vehicles," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 239-248.
    3. Oliveira, Gabriela D. & Roth, Richard & Dias, Luis C., 2019. "Diffusion of alternative fuel vehicles considering dynamic preferences," Technological Forecasting and Social Change, Elsevier, vol. 147(C), pages 83-99.
    4. Massiani, Jérôme & Gohs, Andreas, 2015. "The choice of Bass model coefficients to forecast diffusion for innovative products: An empirical investigation for new automotive technologies," Research in Transportation Economics, Elsevier, vol. 50(C), pages 17-28.
    5. Tang, Bao-jun & Wu, Xiao-feng & Zhang, Xian, 2013. "Modeling the CO2 emissions and energy saved from new energy vehicles based on the logistic-curve," Energy Policy, Elsevier, vol. 57(C), pages 30-35.
    6. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    7. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    8. Ha, Sung Ho & Liu, Weina & Cho, Hune & Kim, Sang Hyun, 2015. "Technological advances in the fuel cell vehicle: Patent portfolio management," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 277-289.
    9. Yuan, Xiaodong & Cai, Yuchen, 2021. "Forecasting the development trend of low emission vehicle technologies: Based on patent data," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    10. Park, Sang Yong & Kim, Jong Wook & Lee, Duk Hee, 2011. "Development of a market penetration forecasting model for Hydrogen Fuel Cell Vehicles considering infrastructure and cost reduction effects," Energy Policy, Elsevier, vol. 39(6), pages 3307-3315, June.
    11. Moon, HyungBin & Park, Stephen Youngjun & Woo, JongRoul, 2021. "Staying on convention or leapfrogging to eco-innovation?: Identifying early adopters of hydrogen-powered vehicles," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moon, Sungho & Kim, Kyungah & Seung, Hyunchan & Kim, Junghun, 2022. "Strategic analysis on effects of technologies, government policies, and consumer perceptions on diffusion of hydrogen fuel cell vehicles," Energy Economics, Elsevier, vol. 115(C).
    2. Zhu, Min & Dong, Peiwu & Ju, Yanbing & Li, Jiajun & Ran, Lun, 2023. "Effects of government subsidies on heavy-duty hydrogen fuel cell truck penetration: A scenario-based system dynamics model," Energy Policy, Elsevier, vol. 183(C).
    3. Geetha Palani & Usha Sengamalai & Pradeep Vishnuram & Benedetto Nastasi, 2023. "Challenges and Barriers of Wireless Charging Technologies for Electric Vehicles," Energies, MDPI, vol. 16(5), pages 1-47, February.
    4. Zhang, Hong & Yuan, Tiejiang, 2022. "Optimization and economic evaluation of a PEM electrolysis system considering its degradation in variable-power operations," Applied Energy, Elsevier, vol. 324(C).
    5. Hyun Kyu Shin & Sung Kyu Ha, 2023. "A Review on the Cost Analysis of Hydrogen Gas Storage Tanks for Fuel Cell Vehicles," Energies, MDPI, vol. 16(13), pages 1-36, July.
    6. Danlu Xu & Zhoubin Liu & Jiahui Zhu & Qin Fang & Rui Shan, 2023. "Linking Cost Decline and Demand Surge in the Hydrogen Market: A Case Study in China," Energies, MDPI, vol. 16(12), pages 1-13, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nelly S. Kolyan & Alexander E. Plesovskikh & Roman V. Gordeev, 2023. "Predictive Assessment of the Potential Electric Vehicle Market and the Effects of Reducing Greenhouse Gas Emissions in Russia," Journal of Applied Economic Research, Graduate School of Economics and Management, Ural Federal University, vol. 22(3), pages 497-521.
    2. Anqi Chen & Shibing You, 2022. "The Fuel Cycle Carbon Reduction Effects of New Energy Vehicles: Empirical Evidence Based on Regional Data in China," Sustainability, MDPI, vol. 14(23), pages 1-17, November.
    3. Anqi Chen & Shibing You & Huan Liu & Jiaxuan Zhu & Xu Peng, 2023. "A Sustainable Road Transport Decarbonisation: The Scenario Analysis of New Energy Vehicle in China," IJERPH, MDPI, vol. 20(4), pages 1-18, February.
    4. Anna Brdulak & Grażyna Chaberek & Jacek Jagodziński, 2021. "BASS Model Analysis in “Crossing the Chasm” in E-Cars Innovation Diffusion Scenarios," Energies, MDPI, vol. 14(11), pages 1-16, May.
    5. Brito, Thiago Luis Felipe & Islam, Towhidul & Stettler, Marc & Mouette, Dominique & Meade, Nigel & Moutinho dos Santos, Edmilson, 2019. "Transitions between technological generations of alternative fuel vehicles in Brazil," Energy Policy, Elsevier, vol. 134(C).
    6. Kurdgelashvili, Lado & Shih, Cheng-Hao & Yang, Fan & Garg, Mehul, 2019. "An empirical analysis of county-level residential PV adoption in California," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 321-333.
    7. Choi, Hyunhong & Woo, JongRoul, 2022. "Investigating emerging hydrogen technology topics and comparing national level technological focus: Patent analysis using a structural topic model," Applied Energy, Elsevier, vol. 313(C).
    8. Mona Kabus & Lars Nolting & Benedict J. Mortimer & Jan C. Koj & Wilhelm Kuckshinrichs & Rik W. De Doncker & Aaron Praktiknjo, 2020. "Environmental Impacts of Charging Concepts for Battery Electric Vehicles: A Comparison of On-Board and Off-Board Charging Systems Based on a Life Cycle Assessment," Energies, MDPI, vol. 13(24), pages 1-31, December.
    9. Reddy, B. Sudhakara, 2018. "Economic dynamics and technology diffusion in indian power sector," Energy Policy, Elsevier, vol. 120(C), pages 425-435.
    10. Sanghamitra Mukherjee, 2021. "A Framework to Measure Regional Disparities in Battery Electric Vehicle Diffusion in Ireland," Working Papers 202119, School of Economics, University College Dublin.
    11. Zhu, Xiaoyan & Jiao, Can & Yuan, Tao, 2019. "Optimal decisions on product reliability, sales and promotion under nonrenewable warranties," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    12. Liu, Xueying & Madlener, Reinhard, 2019. "Get Ready for Take-Off: A Two-Stage Model of Aircraft Market Diffusion," FCN Working Papers 15/2019, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    13. Rubio, Francisco & Llopis-Albert, Carlos & Besa, Antonio José, 2023. "Optimal allocation of energy sources in hydrogen production for sustainable deployment of electric vehicles," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    14. Reda Cherif & Fuad Hasanov & Aditya Pande, 2021. "Riding the Energy Transition: Oil beyond 2040," Asian Economic Policy Review, Japan Center for Economic Research, vol. 16(1), pages 117-137, January.
    15. Basaure, Arturo & Benseny, Jaume, 2020. "Smart city platform adoption for C-V2X services," ITS Conference, Online Event 2020 224845, International Telecommunications Society (ITS).
    16. Heymann, Fabian & Miranda, Vladimiro & Soares, Filipe Joel & Duenas, Pablo & Perez Arriaga, Ignacio & Prata, Ricardo, 2019. "Orchestrating incentive designs to reduce adverse system-level effects of large-scale EV/PV adoption – The case of Portugal," Applied Energy, Elsevier, vol. 256(C).
    17. Martin Zsifkovits & Markus Günther, 2015. "Simulating resistances in innovation diffusion over multiple generations: an agent-based approach for fuel-cell vehicles," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 23(2), pages 501-522, June.
    18. Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521520911.
    19. Xu, Chen (Sarah) & Cheng, Liang-Chieh (Victor), 2016. "Adoption of Natural Gas Vehicles – Estimates for the U.S. and the State of Texas," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 55(2), August.
    20. Massiani, Jérôme & Gohs, Andreas, 2015. "The choice of Bass model coefficients to forecast diffusion for innovative products: An empirical investigation for new automotive technologies," Research in Transportation Economics, Elsevier, vol. 50(C), pages 17-28.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:181:y:2022:i:c:s004016252200275x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.