IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v96y2018icp487-501.html
   My bibliography  Save this article

A novel integrated framework to evaluate greenhouse energy demand and crop yield production

Author

Listed:
  • Golzar, Farzin
  • Heeren, Niko
  • Hellweg, Stefanie
  • Roshandel, Ramin

Abstract

Greenhouses are complex systems that require considerable amounts of energy. In order to optimize their performance, it is necessary to reduce the amount of energy per unit of crop produced. This requires a combined assessment of greenhouse energy balance and crop growth, as well as their interaction. In this work, more than 30 existing greenhouse models are reviewed and different algorithms are combined to propose an integrated energy-yield model. The physical model of greenhouse energy demand is based on the dynamic energy and mass balance while yield production is based on a physiological crop model.

Suggested Citation

  • Golzar, Farzin & Heeren, Niko & Hellweg, Stefanie & Roshandel, Ramin, 2018. "A novel integrated framework to evaluate greenhouse energy demand and crop yield production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 487-501.
  • Handle: RePEc:eee:rensus:v:96:y:2018:i:c:p:487-501
    DOI: 10.1016/j.rser.2018.06.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118304829
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.06.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van Beveren, P.J.M. & Bontsema, J. & van Straten, G. & van Henten, E.J., 2015. "Optimal control of greenhouse climate using minimal energy and grower defined bounds," Applied Energy, Elsevier, vol. 159(C), pages 509-519.
    2. Chou, S. K. & Chua, K. J. & Ho, J. C. & Ooi, C. L., 2004. "On the study of an energy-efficient greenhouse for heating, cooling and dehumidification applications," Applied Energy, Elsevier, vol. 77(4), pages 355-373, April.
    3. Canakci, Murad & Yasemin Emekli, N. & Bilgin, Sefai & Caglayan, Nuri, 2013. "Heating requirement and its costs in greenhouse structures: A case study for Mediterranean region of Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 483-490.
    4. Cuce, Erdem & Harjunowibowo, Dewanto & Cuce, Pinar Mert, 2016. "Renewable and sustainable energy saving strategies for greenhouse systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 34-59.
    5. Singh, Gurpreet & Singh, Parm Pal & Lubana, Prit Pal Singh & Singh, K.G., 2006. "Formulation and validation of a mathematical model of the microclimate of a greenhouse," Renewable Energy, Elsevier, vol. 31(10), pages 1541-1560.
    6. Dayan, E. & van Keulen, H. & Jones, J. W. & Zipori, I. & Shmuel, D. & Challa, H., 1993. "Development, calibration and validation of a greenhouse tomato growth model: II. Field calibration and validation," Agricultural Systems, Elsevier, vol. 43(2), pages 165-183.
    7. Van Beveren, P.J.M. & Bontsema, J. & Van Straten, G. & Van Henten, E.J., 2015. "Minimal heating and cooling in a modern rose greenhouse," Applied Energy, Elsevier, vol. 137(C), pages 97-109.
    8. Dayan, E. & van Keulen, H. & Jones, J. W. & Zipori, I. & Shmuel, D. & Challa, H., 1993. "Development, calibration and validation of a greenhouse tomato growth model: I. Description of the model," Agricultural Systems, Elsevier, vol. 43(2), pages 145-163.
    9. Wang, Tianyue & Wu, Gaoxiang & Chen, Jiewei & Cui, Peng & Chen, Zexi & Yan, Yangyang & Zhang, Yan & Li, Meicheng & Niu, Dongxiao & Li, Baoguo & Chen, Hongyi, 2017. "Integration of solar technology to modern greenhouse in China: Current status, challenges and prospect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1178-1188.
    10. Hassanien, Reda Hassanien Emam & Li, Ming & Dong Lin, Wei, 2016. "Advanced applications of solar energy in agricultural greenhouses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 989-1001.
    11. Vadiee, Amir & Martin, Viktoria, 2013. "Energy analysis and thermoeconomic assessment of the closed greenhouse – The largest commercial solar building," Applied Energy, Elsevier, vol. 102(C), pages 1256-1266.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Guoqing & You, Fengqi, 2023. "An AI framework integrating physics-informed neural network with predictive control for energy-efficient food production in the built environment," Applied Energy, Elsevier, vol. 348(C).
    2. Zhang, Guanshan & Ding, Xiaoming & Li, Tianhua & Pu, Wenyang & Lou, Wei & Hou, Jialin, 2020. "Dynamic energy balance model of a glass greenhouse: An experimental validation and solar energy analysis," Energy, Elsevier, vol. 198(C).
    3. Vanessa Burg & Farzin Golzar & Gillianne Bowman & Stefanie Hellweg & Ramin Roshandel, 2021. "Symbiosis opportunities between food and energy system: The potential of manure‐based biogas as heating source for greenhouse production," Journal of Industrial Ecology, Yale University, vol. 25(3), pages 648-662, June.
    4. Gang Wu & Hui Fang & Yi Zhang & Kun Li & Dan Xu, 2023. "Photothermal and Photovoltaic Utilization for Improving the Thermal Environment of Chinese Solar Greenhouses: A Review," Energies, MDPI, vol. 16(19), pages 1-29, September.
    5. Premaratne Samaranayake & Chelsea Maier & Sachin Chavan & Weiguang Liang & Zhong-Hua Chen & David T. Tissue & Yi-Chen Lan, 2021. "Energy Minimisation in a Protected Cropping Facility Using Multi-Temperature Acquisition Points and Control of Ventilation Settings," Energies, MDPI, vol. 14(19), pages 1-18, September.
    6. Gianluca Serale & Luca Gnoli & Emanuele Giraudo & Enrico Fabrizio, 2021. "A Supervisory Control Strategy for Improving Energy Efficiency of Artificial Lighting Systems in Greenhouses," Energies, MDPI, vol. 14(1), pages 1-19, January.
    7. Hu, Guoqing & You, Fengqi, 2022. "Renewable energy-powered semi-closed greenhouse for sustainable crop production using model predictive control and machine learning for energy management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    8. Tahery, Danial & Roshandel, Ramin & Avami, Akram, 2021. "An integrated dynamic model for evaluating the influence of ground to air heat transfer system on heating, cooling and CO2 supply in Greenhouses: Considering crop transpiration," Renewable Energy, Elsevier, vol. 173(C), pages 42-56.
    9. Carson Kinney & Alireza Dehghani-Sanij & SeyedBijan Mahbaz & Maurice B. Dusseault & Jatin S. Nathwani & Roydon A. Fraser, 2019. "Geothermal Energy for Sustainable Food Production in Canada’s Remote Northern Communities," Energies, MDPI, vol. 12(21), pages 1-25, October.
    10. Katzin, David & van Henten, Eldert J. & van Mourik, Simon, 2022. "Process-based greenhouse climate models: Genealogy, current status, and future directions," Agricultural Systems, Elsevier, vol. 198(C).
    11. Iddio, E. & Wang, L. & Thomas, Y. & McMorrow, G. & Denzer, A., 2020. "Energy efficient operation and modeling for greenhouses: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    12. Katzin, David & Marcelis, Leo F.M. & van Mourik, Simon, 2021. "Energy savings in greenhouses by transition from high-pressure sodium to LED lighting," Applied Energy, Elsevier, vol. 281(C).
    13. Costantino, Andrea & Comba, Lorenzo & Sicardi, Giacomo & Bariani, Mauro & Fabrizio, Enrico, 2021. "Energy performance and climate control in mechanically ventilated greenhouses: A dynamic modelling-based assessment and investigation," Applied Energy, Elsevier, vol. 288(C).
    14. Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Guanshan & Ding, Xiaoming & Li, Tianhua & Pu, Wenyang & Lou, Wei & Hou, Jialin, 2020. "Dynamic energy balance model of a glass greenhouse: An experimental validation and solar energy analysis," Energy, Elsevier, vol. 198(C).
    2. Hu, Guoqing & You, Fengqi, 2022. "Renewable energy-powered semi-closed greenhouse for sustainable crop production using model predictive control and machine learning for energy management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Sun, Weituo & Wei, Xiaoming & Zhou, Baochang & Lu, Chungui & Guo, Wenzhong, 2022. "Greenhouse heating by energy transfer between greenhouses: System design and implementation," Applied Energy, Elsevier, vol. 325(C).
    4. Cossu, Marco & Cossu, Andrea & Deligios, Paola A. & Ledda, Luigi & Li, Zhi & Fatnassi, Hicham & Poncet, Christine & Yano, Akira, 2018. "Assessment and comparison of the solar radiation distribution inside the main commercial photovoltaic greenhouse types in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 822-834.
    5. Yano, Akira & Cossu, Marco, 2019. "Energy sustainable greenhouse crop cultivation using photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 116-137.
    6. Barkat Rabbi & Zhong-Hua Chen & Subbu Sethuvenkatraman, 2019. "Protected Cropping in Warm Climates: A Review of Humidity Control and Cooling Methods," Energies, MDPI, vol. 12(14), pages 1-24, July.
    7. Dafni Despoina Avgoustaki & George Xydis, 2020. "Plant factories in the water-food-energy Nexus era: a systematic bibliographical review," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(2), pages 253-268, April.
    8. Katzin, David & van Henten, Eldert J. & van Mourik, Simon, 2022. "Process-based greenhouse climate models: Genealogy, current status, and future directions," Agricultural Systems, Elsevier, vol. 198(C).
    9. Zhi Li & Akira Yano & Marco Cossu & Hidekazu Yoshioka & Ichiro Kita & Yasuomi Ibaraki, 2018. "Electrical Energy Producing Greenhouse Shading System with a Semi-Transparent Photovoltaic Blind Based on Micro-Spherical Solar Cells," Energies, MDPI, vol. 11(7), pages 1-23, June.
    10. Marucci, Alvaro & Cappuccini, Andrea, 2016. "Dynamic photovoltaic greenhouse: Energy efficiency in clear sky conditions," Applied Energy, Elsevier, vol. 170(C), pages 362-376.
    11. Achour, Yasmine & Ouammi, Ahmed & Zejli, Driss, 2021. "Technological progresses in modern sustainable greenhouses cultivation as the path towards precision agriculture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    12. Lin, Dong & Zhang, Lijun & Xia, Xiaohua, 2021. "Model predictive control of a Venlo-type greenhouse system considering electrical energy, water and carbon dioxide consumption," Applied Energy, Elsevier, vol. 298(C).
    13. Hassanien, Reda Hassanien Emam & Li, Ming & Dong Lin, Wei, 2016. "Advanced applications of solar energy in agricultural greenhouses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 989-1001.
    14. Hu, Guoqing & You, Fengqi, 2023. "An AI framework integrating physics-informed neural network with predictive control for energy-efficient food production in the built environment," Applied Energy, Elsevier, vol. 348(C).
    15. Dayan, E. & Presnov, E. & Fuchs, M., 2004. "Prediction and calculation of morphological characteristics and distribution of assimilates in the ROSGRO model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 65(1), pages 101-116.
    16. Zhang, Kai & Yu, Jihua & Ren, Yan, 2022. "Research on the size optimization of photovoltaic panels and integrated application with Chinese solar greenhouses," Renewable Energy, Elsevier, vol. 182(C), pages 536-551.
    17. La Notte, Luca & Giordano, Lorena & Calabrò, Emanuele & Bedini, Roberto & Colla, Giuseppe & Puglisi, Giovanni & Reale, Andrea, 2020. "Hybrid and organic photovoltaics for greenhouse applications," Applied Energy, Elsevier, vol. 278(C).
    18. Oreggioni, G.D. & Luberti, M. & Tassou, S.A., 2019. "Agricultural greenhouse CO2 utilization in anaerobic-digestion-based biomethane production plants: A techno-economic and environmental assessment and comparison with CO2 geological storage," Applied Energy, Elsevier, vol. 242(C), pages 1753-1766.
    19. Hegazy, Anwar & Farid, Mohammed & Subiantoro, Alison & Norris, Stuart, 2022. "Sustainable cooling strategies to minimize water consumption in a greenhouse in a hot arid region," Agricultural Water Management, Elsevier, vol. 274(C).
    20. Kazuya Maeda & Dong-Hyuk Ahn, 2021. "Estimation of Dry Matter Production and Yield Prediction in Greenhouse Cucumber without Destructive Measurements," Agriculture, MDPI, vol. 11(12), pages 1-10, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:96:y:2018:i:c:p:487-501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.