IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v170y2016icp362-376.html
   My bibliography  Save this article

Dynamic photovoltaic greenhouse: Energy efficiency in clear sky conditions

Author

Listed:
  • Marucci, Alvaro
  • Cappuccini, Andrea

Abstract

This paper assesses the energy efficiency of a prototype of a dynamic photovoltaic (PV) greenhouse that has an asymmetric cross section and allows the rotation of the PV modules around their longitudinal axis throughout the day to select the degree of shading inside the structure. The goal of this research is to study the production of energy and the microclimate inside the structure with different tilt angles of the PV panels to improve the information available to support the farmers and to create a PV greenhouse capable of producing income from electrical and agricultural activity. The average values of the internal air temperature and relative humidity, measured during the hottest period and on days with clear skies, are within the optimal ranges for major vegetable species (17–27°C and 60–90%, respectively). The values of the solar radiation available for the plants were always sufficient for normal agricultural operations, except for the last two days of the experiment (values lower than 5MJm−2) in which the shading percentage analyzed was too high for normal production. When the shading percentage was highest (78%), the maximum value of PV power (102Wm−2) was recorded and when the shading percentage was equal to 0%, the minimum value of PV power (20Wm−2) was recorded. The results show that it is possible to balance the electricity production using photovoltaic panels and the agricultural production as a function of the type of crop grown, latitude, operating season, and characteristics of the greenhouse.

Suggested Citation

  • Marucci, Alvaro & Cappuccini, Andrea, 2016. "Dynamic photovoltaic greenhouse: Energy efficiency in clear sky conditions," Applied Energy, Elsevier, vol. 170(C), pages 362-376.
  • Handle: RePEc:eee:appene:v:170:y:2016:i:c:p:362-376
    DOI: 10.1016/j.apenergy.2016.02.138
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191630294X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.02.138?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sacco, Adriano & Rolle, Lidia & Scaltrito, Luciano & Tresso, Elena & Pirri, Candido Fabrizio, 2013. "Characterization of photovoltaic modules for low-power indoor application," Applied Energy, Elsevier, vol. 102(C), pages 1295-1302.
    2. Vadiee, Amir & Martin, Viktoria, 2012. "Energy management in horticultural applications through the closed greenhouse concept, state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5087-5100.
    3. Wand, Robert & Leuthold, Florian, 2011. "Feed-in tariffs for photovoltaics: Learning by doing in Germany?," Applied Energy, Elsevier, vol. 88(12), pages 4387-4399.
    4. Nayak, Sujata & Tiwari, G.N., 2010. "Energy metrics of photovoltaic/thermal and earth air heat exchanger integrated greenhouse for different climatic conditions of India," Applied Energy, Elsevier, vol. 87(10), pages 2984-2993, October.
    5. Sethi, V.P. & Sharma, S.K., 2007. "Greenhouse heating and cooling using aquifer water," Energy, Elsevier, vol. 32(8), pages 1414-1421.
    6. Vadiee, Amir & Martin, Viktoria, 2014. "Energy management strategies for commercial greenhouses," Applied Energy, Elsevier, vol. 114(C), pages 880-888.
    7. Chou, S. K. & Chua, K. J. & Ho, J. C. & Ooi, C. L., 2004. "On the study of an energy-efficient greenhouse for heating, cooling and dehumidification applications," Applied Energy, Elsevier, vol. 77(4), pages 355-373, April.
    8. Canakci, Murad & Yasemin Emekli, N. & Bilgin, Sefai & Caglayan, Nuri, 2013. "Heating requirement and its costs in greenhouse structures: A case study for Mediterranean region of Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 483-490.
    9. Chau, J. & Sowlati, T. & Sokhansanj, S. & Preto, F. & Melin, S. & Bi, X., 2009. "Economic sensitivity of wood biomass utilization for greenhouse heating application," Applied Energy, Elsevier, vol. 86(5), pages 616-621, May.
    10. Celik, Ali Naci, 2006. "Present status of photovoltaic energy in Turkey and life cycle techno-economic analysis of a grid-connected photovoltaic-house," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 370-387, August.
    11. Orioli, Aldo & Di Gangi, Alessandra, 2015. "The recent change in the Italian policies for photovoltaics: Effects on the payback period and levelized cost of electricity of grid-connected photovoltaic systems installed in urban contexts," Energy, Elsevier, vol. 93(P2), pages 1989-2005.
    12. Chen, Jiaoliao & Xu, Fang & Tan, Dapeng & Shen, Zheng & Zhang, Libin & Ai, Qinglin, 2015. "A control method for agricultural greenhouses heating based on computational fluid dynamics and energy prediction model," Applied Energy, Elsevier, vol. 141(C), pages 106-118.
    13. Ozgener, Onder & Hepbasli, Arif, 2007. "A review on the energy and exergy analysis of solar assisted heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(3), pages 482-496, April.
    14. Canakci, M. & Akinci, I., 2006. "Energy use pattern analyses of greenhouse vegetable production," Energy, Elsevier, vol. 31(8), pages 1243-1256.
    15. Lakhani, Raksha & Doluweera, Ganesh & Bergerson, Joule, 2014. "Internalizing land use impacts for life cycle cost analysis of energy systems: A case of California’s photovoltaic implementation," Applied Energy, Elsevier, vol. 116(C), pages 253-259.
    16. Khan, Firoz & Baek, Seong-Ho & Kim, Jae Hyun, 2014. "Intensity dependency of photovoltaic cell parameters under high illumination conditions: An analysis," Applied Energy, Elsevier, vol. 133(C), pages 356-362.
    17. Cossu, Marco & Yano, Akira & Li, Zhi & Onoe, Mahiro & Nakamura, Hidetoshi & Matsumoto, Toshinori & Nakata, Josuke, 2016. "Advances on the semi-transparent modules based on micro solar cells: First integration in a greenhouse system," Applied Energy, Elsevier, vol. 162(C), pages 1042-1051.
    18. Vadiee, Amir & Martin, Viktoria, 2013. "Energy analysis and thermoeconomic assessment of the closed greenhouse – The largest commercial solar building," Applied Energy, Elsevier, vol. 102(C), pages 1256-1266.
    19. Vats, Kanchan & Tiwari, G.N., 2012. "Energy and exergy analysis of a building integrated semitransparent photovoltaic thermal (BISPVT) system," Applied Energy, Elsevier, vol. 96(C), pages 409-416.
    20. Pérez-Alonso, J. & Pérez-García, M. & Pasamontes-Romera, M. & Callejón-Ferre, A.J., 2012. "Performance analysis and neural modelling of a greenhouse integrated photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4675-4685.
    21. Cossu, Marco & Murgia, Lelia & Ledda, Luigi & Deligios, Paola A. & Sirigu, Antonella & Chessa, Francesco & Pazzona, Antonio, 2014. "Solar radiation distribution inside a greenhouse with south-oriented photovoltaic roofs and effects on crop productivity," Applied Energy, Elsevier, vol. 133(C), pages 89-100.
    22. Chow, T.T., 2010. "A review on photovoltaic/thermal hybrid solar technology," Applied Energy, Elsevier, vol. 87(2), pages 365-379, February.
    23. Mondol, Jayanta Deb & Yohanis, Yigzaw G & Norton, Brian, 2009. "Optimising the economic viability of grid-connected photovoltaic systems," Applied Energy, Elsevier, vol. 86(7-8), pages 985-999, July.
    24. Peng, Jinqing & Lu, Lin & Yang, Hongxing & Han, Jun, 2013. "Investigation on the annual thermal performance of a photovoltaic wall mounted on a multi-layer façade," Applied Energy, Elsevier, vol. 112(C), pages 646-656.
    25. DeBlois, Justin & Bilec, Melissa & Schaefer, Laura, 2013. "Simulating home cooling load reductions for a novel opaque roof solar chimney configuration," Applied Energy, Elsevier, vol. 112(C), pages 142-151.
    26. Marucci, Alvaro & Cappuccini, Andrea, 2016. "Dynamic photovoltaic greenhouse: Energy balance in completely clear sky condition during the hot period," Energy, Elsevier, vol. 102(C), pages 302-312.
    27. Djevic, M. & Dimitrijevic, A., 2009. "Energy consumption for different greenhouse constructions," Energy, Elsevier, vol. 34(9), pages 1325-1331.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simona Moretti & Alvaro Marucci, 2019. "A Photovoltaic Greenhouse with Passive Variation in Shading by Fixed Horizontal PV Panels," Energies, MDPI, vol. 12(17), pages 1-18, August.
    2. Achour, Yasmine & Ouammi, Ahmed & Zejli, Driss, 2021. "Technological progresses in modern sustainable greenhouses cultivation as the path towards precision agriculture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    3. Katsikogiannis, Odysseas Alexandros & Ziar, Hesan & Isabella, Olindo, 2022. "Integration of bifacial photovoltaics in agrivoltaic systems: A synergistic design approach," Applied Energy, Elsevier, vol. 309(C).
    4. Hilario Becerril & Ignacio De los Rios, 2016. "Energy Efficiency Strategies for Ecological Greenhouses: Experiences from Murcia (Spain)," Energies, MDPI, vol. 9(11), pages 1-23, October.
    5. Se-Hyeok Choi & Akhtar Hussain & Hak-Man Kim, 2019. "Optimal Operation of Building Microgrids with Rooftop Greenhouse Under Component Outages in Islanded Mode," Energies, MDPI, vol. 12(10), pages 1-23, May.
    6. Nadal, Ana & Llorach-Massana, Pere & Cuerva, Eva & López-Capel, Elisa & Montero, Juan Ignacio & Josa, Alejandro & Rieradevall, Joan & Royapoor, Mohammad, 2017. "Building-integrated rooftop greenhouses: An energy and environmental assessment in the mediterranean context," Applied Energy, Elsevier, vol. 187(C), pages 338-351.
    7. Cossu, Marco & Cossu, Andrea & Deligios, Paola A. & Ledda, Luigi & Li, Zhi & Fatnassi, Hicham & Poncet, Christine & Yano, Akira, 2018. "Assessment and comparison of the solar radiation distribution inside the main commercial photovoltaic greenhouse types in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 822-834.
    8. Zhang, Guanshan & Ding, Xiaoming & Li, Tianhua & Pu, Wenyang & Lou, Wei & Hou, Jialin, 2020. "Dynamic energy balance model of a glass greenhouse: An experimental validation and solar energy analysis," Energy, Elsevier, vol. 198(C).
    9. Hassanien, Reda Hassanien Emam & Li, Ming & Yin, Fang, 2018. "The integration of semi-transparent photovoltaics on greenhouse roof for energy and plant production," Renewable Energy, Elsevier, vol. 121(C), pages 377-388.
    10. Gao, Yuan & Dong, Jianfei & Isabella, Olindo & Santbergen, Rudi & Tan, Hairen & Zeman, Miro & Zhang, Guoqi, 2019. "Modeling and analyses of energy performances of photovoltaic greenhouses with sun-tracking functionality," Applied Energy, Elsevier, vol. 233, pages 424-442.
    11. Gang Wu & Hui Fang & Yi Zhang & Kun Li & Dan Xu, 2023. "Photothermal and Photovoltaic Utilization for Improving the Thermal Environment of Chinese Solar Greenhouses: A Review," Energies, MDPI, vol. 16(19), pages 1-29, September.
    12. Alberto Bocca & Luca Bergamasco & Matteo Fasano & Lorenzo Bottaccioli & Eliodoro Chiavazzo & Alberto Macii & Pietro Asinari, 2018. "Multiple-Regression Method for Fast Estimation of Solar Irradiation and Photovoltaic Energy Potentials over Europe and Africa," Energies, MDPI, vol. 11(12), pages 1-17, December.
    13. La Notte, Luca & Giordano, Lorena & Calabrò, Emanuele & Bedini, Roberto & Colla, Giuseppe & Puglisi, Giovanni & Reale, Andrea, 2020. "Hybrid and organic photovoltaics for greenhouse applications," Applied Energy, Elsevier, vol. 278(C).
    14. Jiaming Guo & Yanhua Liu & Enli Lü, 2019. "Numerical Simulation of Temperature Decrease in Greenhouses with Summer Water-Sprinkling Roof," Energies, MDPI, vol. 12(12), pages 1-15, June.
    15. Jing, Rui & He, Yang & He, Jijiang & Liu, Yang & Yang, Shoubing, 2022. "Global sensitivity based prioritizing the parametric uncertainties in economic analysis when co-locating photovoltaic with agriculture and aquaculture in China," Renewable Energy, Elsevier, vol. 194(C), pages 1048-1059.
    16. Li, Zhi & Yano, Akira & Yoshioka, Hidekazu, 2020. "Feasibility study of a blind-type photovoltaic roof-shade system designed for simultaneous production of crops and electricity in a greenhouse," Applied Energy, Elsevier, vol. 279(C).
    17. Yano, Akira & Cossu, Marco, 2019. "Energy sustainable greenhouse crop cultivation using photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 116-137.
    18. Zhi Li & Akira Yano & Marco Cossu & Hidekazu Yoshioka & Ichiro Kita & Yasuomi Ibaraki, 2018. "Electrical Energy Producing Greenhouse Shading System with a Semi-Transparent Photovoltaic Blind Based on Micro-Spherical Solar Cells," Energies, MDPI, vol. 11(7), pages 1-23, June.
    19. Raúl Aroca-Delgado & José Pérez-Alonso & Ángel Jesús Callejón-Ferre & Borja Velázquez-Martí, 2018. "Compatibility between Crops and Solar Panels: An Overview from Shading Systems," Sustainability, MDPI, vol. 10(3), pages 1-19, March.
    20. Rabhy, Omar O. & Adam, I.G. & Elsayed Youssef, M. & Rashad, A.B. & Hassan, Gasser E., 2019. "Numerical and experimental analyses of a transparent solar distiller for an agricultural greenhouse," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    21. El Kolaly, Wael & Ma, Wenhui & Li, Ming & Darwesh, Mohammed, 2020. "The investigation of energy production and mushroom yield in greenhouse production based on mono photovoltaic cells effect," Renewable Energy, Elsevier, vol. 159(C), pages 506-518.
    22. Carlos Toledo & Alessandra Scognamiglio, 2021. "Agrivoltaic Systems Design and Assessment: A Critical Review, and a Descriptive Model towards a Sustainable Landscape Vision (Three-Dimensional Agrivoltaic Patterns)," Sustainability, MDPI, vol. 13(12), pages 1-38, June.
    23. Simona Moretti & Alvaro Marucci, 2019. "A Photovoltaic Greenhouse with Variable Shading for the Optimization of Agricultural and Energy Production," Energies, MDPI, vol. 12(13), pages 1-15, July.
    24. Alinejad, T. & Yaghoubi, M. & Vadiee, A., 2020. "Thermo-environomic assessment of an integrated greenhouse with an adjustable solar photovoltaic blind system," Renewable Energy, Elsevier, vol. 156(C), pages 1-13.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cossu, Marco & Murgia, Lelia & Ledda, Luigi & Deligios, Paola A. & Sirigu, Antonella & Chessa, Francesco & Pazzona, Antonio, 2014. "Solar radiation distribution inside a greenhouse with south-oriented photovoltaic roofs and effects on crop productivity," Applied Energy, Elsevier, vol. 133(C), pages 89-100.
    2. Yano, Akira & Cossu, Marco, 2019. "Energy sustainable greenhouse crop cultivation using photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 116-137.
    3. Hassanien, Reda Hassanien Emam & Li, Ming & Dong Lin, Wei, 2016. "Advanced applications of solar energy in agricultural greenhouses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 989-1001.
    4. Cossu, Marco & Cossu, Andrea & Deligios, Paola A. & Ledda, Luigi & Li, Zhi & Fatnassi, Hicham & Poncet, Christine & Yano, Akira, 2018. "Assessment and comparison of the solar radiation distribution inside the main commercial photovoltaic greenhouse types in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 822-834.
    5. Hassanien, Reda Hassanien Emam & Li, Ming & Yin, Fang, 2018. "The integration of semi-transparent photovoltaics on greenhouse roof for energy and plant production," Renewable Energy, Elsevier, vol. 121(C), pages 377-388.
    6. Barkat Rabbi & Zhong-Hua Chen & Subbu Sethuvenkatraman, 2019. "Protected Cropping in Warm Climates: A Review of Humidity Control and Cooling Methods," Energies, MDPI, vol. 12(14), pages 1-24, July.
    7. Dafni Despoina Avgoustaki & George Xydis, 2020. "Plant factories in the water-food-energy Nexus era: a systematic bibliographical review," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(2), pages 253-268, April.
    8. Chen, Jiaoliao & Xu, Fang & Tan, Dapeng & Shen, Zheng & Zhang, Libin & Ai, Qinglin, 2015. "A control method for agricultural greenhouses heating based on computational fluid dynamics and energy prediction model," Applied Energy, Elsevier, vol. 141(C), pages 106-118.
    9. Cuce, Erdem & Harjunowibowo, Dewanto & Cuce, Pinar Mert, 2016. "Renewable and sustainable energy saving strategies for greenhouse systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 34-59.
    10. La Notte, Luca & Giordano, Lorena & Calabrò, Emanuele & Bedini, Roberto & Colla, Giuseppe & Puglisi, Giovanni & Reale, Andrea, 2020. "Hybrid and organic photovoltaics for greenhouse applications," Applied Energy, Elsevier, vol. 278(C).
    11. Zhi Li & Akira Yano & Marco Cossu & Hidekazu Yoshioka & Ichiro Kita & Yasuomi Ibaraki, 2018. "Electrical Energy Producing Greenhouse Shading System with a Semi-Transparent Photovoltaic Blind Based on Micro-Spherical Solar Cells," Energies, MDPI, vol. 11(7), pages 1-23, June.
    12. Cossu, Marco & Yano, Akira & Li, Zhi & Onoe, Mahiro & Nakamura, Hidetoshi & Matsumoto, Toshinori & Nakata, Josuke, 2016. "Advances on the semi-transparent modules based on micro solar cells: First integration in a greenhouse system," Applied Energy, Elsevier, vol. 162(C), pages 1042-1051.
    13. Andrea Colantoni & Danilo Monarca & Alvaro Marucci & Massimo Cecchini & Ilaria Zambon & Federico Di Battista & Diego Maccario & Maria Grazia Saporito & Margherita Beruto, 2018. "Solar Radiation Distribution inside a Greenhouse Prototypal with Photovoltaic Mobile Plant and Effects on Flower Growth," Sustainability, MDPI, vol. 10(3), pages 1-17, March.
    14. Marucci, Alvaro & Cappuccini, Andrea, 2016. "Dynamic photovoltaic greenhouse: Energy balance in completely clear sky condition during the hot period," Energy, Elsevier, vol. 102(C), pages 302-312.
    15. Tataraki, Kalliopi G. & Kavvadias, Konstantinos C. & Maroulis, Zacharias B., 2019. "Combined cooling heating and power systems in greenhouses. Grassroots and retrofit design," Energy, Elsevier, vol. 189(C).
    16. Raúl Aroca-Delgado & José Pérez-Alonso & Ángel Jesús Callejón-Ferre & Borja Velázquez-Martí, 2018. "Compatibility between Crops and Solar Panels: An Overview from Shading Systems," Sustainability, MDPI, vol. 10(3), pages 1-19, March.
    17. Carlos Toledo & Alessandra Scognamiglio, 2021. "Agrivoltaic Systems Design and Assessment: A Critical Review, and a Descriptive Model towards a Sustainable Landscape Vision (Three-Dimensional Agrivoltaic Patterns)," Sustainability, MDPI, vol. 13(12), pages 1-38, June.
    18. Ge, Quanwu & Ke, Zhixin & Liu, Yutong & Chai, Fu & Yang, Wenhua & Zhang, Zhili & Wang, Yang, 2023. "Low-carbon strategy of demand-based regulating heating and lighting for the heterogeneous environment in beijing Venlo-type greenhouse," Energy, Elsevier, vol. 267(C).
    19. Li, Zhi & Yano, Akira & Yoshioka, Hidekazu, 2020. "Feasibility study of a blind-type photovoltaic roof-shade system designed for simultaneous production of crops and electricity in a greenhouse," Applied Energy, Elsevier, vol. 279(C).
    20. Simona Moretti & Alvaro Marucci, 2019. "A Photovoltaic Greenhouse with Variable Shading for the Optimization of Agricultural and Energy Production," Energies, MDPI, vol. 12(13), pages 1-15, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:170:y:2016:i:c:p:362-376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.