IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v16y2012i7p5087-5100.html
   My bibliography  Save this article

Energy management in horticultural applications through the closed greenhouse concept, state of the art

Author

Listed:
  • Vadiee, Amir
  • Martin, Viktoria

Abstract

The commercial greenhouse has the highest demand for energy as compared to all other agricultural industry sectors. Here, energy management is important from a broad sustainability perspective. This paper presents the state-of-the-art regarding one energy management concept; the closed greenhouse integrated with thermal energy storage (TES) technology. This concept is an innovation for sustainable energy management since it is designed to maximize the utilization of solar energy through seasonal storage. In a fully closed greenhouse, there is no ventilation which means that excess sensible and latent heat must be removed. Then, this heat can be stored using seasonal and/or daily TES technology, and used later in order to satisfy the heating demand of the greenhouse. This assessment shows that closed greenhouse can, in addition to satisfying its own heating demand, also supply the demand for neighboring buildings. Several energy potential studies show that summer excess heat of almost three times the annual heating demand of the greenhouse. However, many studies propose the use of some auxiliary system for peak load. Also, the assessment clearly point out that a combination of seasonal and short-term TES must be further explored to make use of the full potential. Although higher amount of solar energy can be harvested in a fully closed greenhouse, in reality a semi-closed greenhouse concept may be more applicable. There, a large part of the available excess heat will be stored, but the benefits of an integrated forced-ventilation system are introduced in order to use fresh air as a rapid response for primarily humidity control. The main conclusion from this review is that aspects like energy efficiency, environmental benefits and economics must be further examined since this is seldom presented in the literature. Also, a variety of energy management scenarios may be employed depending on the most prioritized aspect.

Suggested Citation

  • Vadiee, Amir & Martin, Viktoria, 2012. "Energy management in horticultural applications through the closed greenhouse concept, state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5087-5100.
  • Handle: RePEc:eee:rensus:v:16:y:2012:i:7:p:5087-5100
    DOI: 10.1016/j.rser.2012.04.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032112002973
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2012.04.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hare, J.G. & Norton, B. & Probert, S.D., 1984. "Design of [`]greenhouses': Thermal aspects," Applied Energy, Elsevier, vol. 18(1), pages 49-82.
    2. Ozgener, Onder & Hepbasli, Arif, 2007. "A review on the energy and exergy analysis of solar assisted heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(3), pages 482-496, April.
    3. Al-Jamal, K., 1994. "Greenhouse cooling in hot countries," Energy, Elsevier, vol. 19(11), pages 1187-1192.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chiara Bersani & Marco Fossa & Antonella Priarone & Roberto Sacile & Enrico Zero, 2021. "Model Predictive Control versus Traditional Relay Control in a High Energy Efficiency Greenhouse," Energies, MDPI, vol. 14(11), pages 1-21, June.
    2. Xu, J. & Li, Y. & Wang, R.Z. & Liu, W. & Zhou, P., 2015. "Experimental performance of evaporative cooling pad systems in greenhouses in humid subtropical climates," Applied Energy, Elsevier, vol. 138(C), pages 291-301.
    3. Morice R. O. Odhiambo & Adnan Abbas & Xiaochan Wang & Ehsan Elahi, 2020. "Thermo-Environmental Assessment of a Heated Venlo-Type Greenhouse in the Yangtze River Delta Region," Sustainability, MDPI, vol. 12(24), pages 1-34, December.
    4. Tahery, Danial & Roshandel, Ramin & Avami, Akram, 2021. "An integrated dynamic model for evaluating the influence of ground to air heat transfer system on heating, cooling and CO2 supply in Greenhouses: Considering crop transpiration," Renewable Energy, Elsevier, vol. 173(C), pages 42-56.
    5. Vadiee, Amir & Martin, Viktoria, 2013. "Thermal energy storage strategies for effective closed greenhouse design," Applied Energy, Elsevier, vol. 109(C), pages 337-343.
    6. Tataraki, Kalliopi G. & Kavvadias, Konstantinos C. & Maroulis, Zacharias B., 2019. "Combined cooling heating and power systems in greenhouses. Grassroots and retrofit design," Energy, Elsevier, vol. 189(C).
    7. Mohammadi, Mohammad & Noorollahi, Younes & Mohammadi-ivatloo, Behnam & Hosseinzadeh, Mehdi & Yousefi, Hossein & Khorasani, Sasan Torabzadeh, 2018. "Optimal management of energy hubs and smart energy hubs – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 33-50.
    8. Dafni Despoina Avgoustaki & George Xydis, 2020. "Plant factories in the water-food-energy Nexus era: a systematic bibliographical review," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(2), pages 253-268, April.
    9. Se-Hyeok Choi & Akhtar Hussain & Hak-Man Kim, 2019. "Optimal Operation of Building Microgrids with Rooftop Greenhouse Under Component Outages in Islanded Mode," Energies, MDPI, vol. 12(10), pages 1-23, May.
    10. Premaratne Samaranayake & Weiguang Liang & Zhong-Hua Chen & David Tissue & Yi-Chen Lan, 2020. "Sustainable Protected Cropping: A Case Study of Seasonal Impacts on Greenhouse Energy Consumption during Capsicum Production," Energies, MDPI, vol. 13(17), pages 1-23, August.
    11. Vadiee, Amir & Martin, Viktoria, 2014. "Energy management strategies for commercial greenhouses," Applied Energy, Elsevier, vol. 114(C), pages 880-888.
    12. Il-Seok Choi & Akhtar Hussain & Van-Hai Bui & Hak-Man Kim, 2018. "A Multi-Agent System-Based Approach for Optimal Operation of Building Microgrids with Rooftop Greenhouse," Energies, MDPI, vol. 11(7), pages 1-24, July.
    13. Sun, Weituo & Wei, Xiaoming & Zhou, Baochang & Lu, Chungui & Guo, Wenzhong, 2022. "Greenhouse heating by energy transfer between greenhouses: System design and implementation," Applied Energy, Elsevier, vol. 325(C).
    14. Van Beveren, P.J.M. & Bontsema, J. & Van Straten, G. & Van Henten, E.J., 2015. "Minimal heating and cooling in a modern rose greenhouse," Applied Energy, Elsevier, vol. 137(C), pages 97-109.
    15. Yano, Akira & Cossu, Marco, 2019. "Energy sustainable greenhouse crop cultivation using photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 116-137.
    16. Chiara Bersani & Ahmed Ouammi & Roberto Sacile & Enrico Zero, 2020. "Model Predictive Control of Smart Greenhouses as the Path towards Near Zero Energy Consumption," Energies, MDPI, vol. 13(14), pages 1-17, July.
    17. Marucci, Alvaro & Cappuccini, Andrea, 2016. "Dynamic photovoltaic greenhouse: Energy efficiency in clear sky conditions," Applied Energy, Elsevier, vol. 170(C), pages 362-376.
    18. Ali, Ameer & Ishaque, Kashif & Lashin, Aref & Al Arifi, Nassir, 2017. "Modeling of a liquid desiccant dehumidification system for close type greenhouse cultivation," Energy, Elsevier, vol. 118(C), pages 578-589.
    19. Grzegorz Nawalany & Paweł Sokołowski, 2021. "Numerical Analysis of the Effect of Ground Dampness on Heat Transfer between Greenhouse and Ground," Sustainability, MDPI, vol. 13(6), pages 1-10, March.
    20. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Khalifah, Zainab & Zakuan, Norhayati & Jusoh, Ahmad & Nor, Khalil Md & Khoshnoudi, Masoumeh, 2017. "A review of multi-criteria decision-making applications to solve energy management problems: Two decades from 1995 to 2015," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 216-256.
    21. Satoshi Takeya & Sanehiro Muromachi & Tatsuo Maekawa & Yoshitaka Yamamoto & Hiroko Mimachi & Takahiro Kinoshita & Tetsuro Murayama & Hiroki Umeda & Dong-Hyuk Ahn & Yasunaga Iwasaki & Hidenori Hashimot, 2017. "Design of Ecological CO 2 Enrichment System for Greenhouse Production using TBAB + CO 2 Semi-Clathrate Hydrate," Energies, MDPI, vol. 10(7), pages 1-12, July.
    22. Saleh Mohammadi & Esmail Khalife & Mohammad Kaveh & Amir Hosein Afkari Sayyah & Ali Mohammad Nikbakht & Mariusz Szymanek & Jacek Dziwulski, 2021. "Comparison of Optimized and Conventional Models of Passive Solar Greenhouse—Case Study: The Indoor Air Temperature, Irradiation, and Energy Demand," Energies, MDPI, vol. 14(17), pages 1-15, August.
    23. Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    24. Alinejad, T. & Yaghoubi, M. & Vadiee, A., 2020. "Thermo-environomic assessment of an integrated greenhouse with an adjustable solar photovoltaic blind system," Renewable Energy, Elsevier, vol. 156(C), pages 1-13.
    25. Barkat Rabbi & Zhong-Hua Chen & Subbu Sethuvenkatraman, 2019. "Protected Cropping in Warm Climates: A Review of Humidity Control and Cooling Methods," Energies, MDPI, vol. 12(14), pages 1-24, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cho, Honghyun, 2015. "Comparative study on the performance and exergy efficiency of a solar hybrid heat pump using R22 and R744," Energy, Elsevier, vol. 93(P2), pages 1267-1276.
    2. Jie, Ji & Jingyong, Cai & Wenzhu, Huang & Yan, Feng, 2015. "Experimental study on the performance of solar-assisted multi-functional heat pump based on enthalpy difference lab with solar simulator," Renewable Energy, Elsevier, vol. 75(C), pages 381-388.
    3. Zhang, Feng & Cai, Jingyong & Ji, Jie & Han, Kedong & Ke, Wei, 2020. "Experimental investigation on the heating and cooling performance of a solar air composite heat source heat pump," Renewable Energy, Elsevier, vol. 161(C), pages 221-229.
    4. Fabrizio, Enrico & Seguro, Federico & Filippi, Marco, 2014. "Integrated HVAC and DHW production systems for Zero Energy Buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 515-541.
    5. Ma, Hongting & Li, Cong & Lu, Wenqian & Zhang, Zeyu & Yu, Shaojie & Du, Na, 2017. "Investigation on a solar-groundwater heat pump unit associated with radiant floor heating," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 972-977.
    6. Qi, Zishu & Gao, Qing & Liu, Yan & Yan, Y.Y. & Spitler, Jeffrey D., 2014. "Status and development of hybrid energy systems from hybrid ground source heat pump in China and other countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 37-51.
    7. Ouazzani Chahidi, Laila & Fossa, Marco & Priarone, Antonella & Mechaqrane, Abdellah, 2021. "Energy saving strategies in sustainable greenhouse cultivation in the mediterranean climate – A case study," Applied Energy, Elsevier, vol. 282(PA).
    8. Marucci, Alvaro & Cappuccini, Andrea, 2016. "Dynamic photovoltaic greenhouse: Energy efficiency in clear sky conditions," Applied Energy, Elsevier, vol. 170(C), pages 362-376.
    9. Sakellariou, Evangelos I. & Axaopoulos, Petros J., 2020. "Energy performance indexes for solar assisted ground source heat pump systems with photovoltaic-thermal collectors," Applied Energy, Elsevier, vol. 272(C).
    10. Wang, Zhangyuan & Guo, Peng & Zhang, Haijing & Yang, Wansheng & Mei, Sheng, 2017. "Comprehensive review on the development of SAHP for domestic hot water," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 871-881.
    11. Chen, Jiaoliao & Xu, Fang & Tan, Dapeng & Shen, Zheng & Zhang, Libin & Ai, Qinglin, 2015. "A control method for agricultural greenhouses heating based on computational fluid dynamics and energy prediction model," Applied Energy, Elsevier, vol. 141(C), pages 106-118.
    12. Vadiee, Amir & Martin, Viktoria, 2013. "Energy analysis and thermoeconomic assessment of the closed greenhouse – The largest commercial solar building," Applied Energy, Elsevier, vol. 102(C), pages 1256-1266.
    13. Hepbasli, Arif, 2008. "A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 593-661, April.
    14. Ozgener, Leyla, 2011. "A review on the experimental and analytical analysis of earth to air heat exchanger (EAHE) systems in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4483-4490.
    15. Poppi, Stefano & Sommerfeldt, Nelson & Bales, Chris & Madani, Hatef & Lundqvist, Per, 2018. "Techno-economic review of solar heat pump systems for residential heating applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 22-32.
    16. Nizetic, S. & Coko, D. & Marasovic, I., 2014. "Experimental study on a hybrid energy system with small- and medium-scale applications for mild climates," Energy, Elsevier, vol. 75(C), pages 379-389.
    17. Bilen, K. & Ozyurt, O. & BakIrcI, K. & KarslI, S. & Erdogan, S. & YIlmaz, M. & ComaklI, O., 2008. "Energy production, consumption, and environmental pollution for sustainable development: A case study in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(6), pages 1529-1561, August.
    18. Noor Muhammad Abd Rahman & Lim Chin Haw & Ahmad Fazlizan, 2021. "A Literature Review of Naturally Ventilated Public Hospital Wards in Tropical Climate Countries for Thermal Comfort and Energy Saving Improvements," Energies, MDPI, vol. 14(2), pages 1-22, January.
    19. Wang, Qin & He, Wei & Liu, Yuqian & Liang, Guofeng & Li, Jiarong & Han, Xiaohong & Chen, Guangming, 2012. "Vapor compression multifunctional heat pumps in China: A review of configurations and operational modes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6522-6538.
    20. Hao, Wengang & Zhang, Han & Liu, Shuonan & Mi, Baoqi & Lai, Yanhua, 2021. "Mathematical modeling and performance analysis of direct expansion heat pump assisted solar drying system," Renewable Energy, Elsevier, vol. 165(P1), pages 77-87.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:16:y:2012:i:7:p:5087-5100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.