IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i7p927-d103539.html
   My bibliography  Save this article

Design of Ecological CO 2 Enrichment System for Greenhouse Production using TBAB + CO 2 Semi-Clathrate Hydrate

Author

Listed:
  • Satoshi Takeya

    (National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8565, Japan)

  • Sanehiro Muromachi

    (National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8565, Japan)

  • Tatsuo Maekawa

    (National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8565, Japan)

  • Yoshitaka Yamamoto

    (National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8565, Japan)

  • Hiroko Mimachi

    (Mitsui Engineering & Shipbuilding, Co., Ltd., 16-1, Tamahara 3, Tamano, Okayama 706-0014, Japan)

  • Takahiro Kinoshita

    (Mitsui Engineering & Shipbuilding, Co., Ltd., 16-1, Tamahara 3, Tamano, Okayama 706-0014, Japan)

  • Tetsuro Murayama

    (Mitsui Engineering & Shipbuilding, Co., Ltd., 16-1, Tamahara 3, Tamano, Okayama 706-0014, Japan)

  • Hiroki Umeda

    (National Agriculture and Food Research Organization, 3-1-1 Kannondai, Tsukuba, Ibaraki 305-8666, Japan
    Present address: College of Bioresource Sciences, Nihon University, Tokyo 113-8656, Japan)

  • Dong-Hyuk Ahn

    (National Agriculture and Food Research Organization, 3-1-1 Kannondai, Tsukuba, Ibaraki 305-8666, Japan)

  • Yasunaga Iwasaki

    (National Agriculture and Food Research Organization, 3-1-1 Kannondai, Tsukuba, Ibaraki 305-8666, Japan)

  • Hidenori Hashimoto

    (National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8565, Japan
    Graduate School of Environment, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan)

  • Tsutomu Yamaguchi

    (National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8565, Japan
    Graduate School of Environment, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan)

  • Katsunori Okaya

    (Graduate School of Engineering, The University of Tokyo, 73-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan)

  • Seiji Matsuo

    (Graduate School of Engineering, The University of Tokyo, 73-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan)

Abstract

This paper proposes an innovative CO 2 enrichment system for crop production under a controlled greenhouse environment by means of tetra- n -butylammonium bromide (TBAB) + CO 2 semi-clathrate hydrate (SC). In this system, CO 2 is captured directly from exhaust gas from a combustion heater at night, which can be used for stimulating photosynthesis of crops in greenhouses during daytime. Although the gas capacity of TBAB + CO 2 SC is less than that of CO 2 gas hydrate, it is shown that TBAB + CO 2 SC can store CO 2 for CO 2 enrichment in crop production even under moderate pressure conditions (<1.0 MPa) at 283 K.

Suggested Citation

  • Satoshi Takeya & Sanehiro Muromachi & Tatsuo Maekawa & Yoshitaka Yamamoto & Hiroko Mimachi & Takahiro Kinoshita & Tetsuro Murayama & Hiroki Umeda & Dong-Hyuk Ahn & Yasunaga Iwasaki & Hidenori Hashimot, 2017. "Design of Ecological CO 2 Enrichment System for Greenhouse Production using TBAB + CO 2 Semi-Clathrate Hydrate," Energies, MDPI, vol. 10(7), pages 1-12, July.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:927-:d:103539
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/7/927/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/7/927/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vadiee, Amir & Martin, Viktoria, 2012. "Energy management in horticultural applications through the closed greenhouse concept, state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5087-5100.
    2. Llorach-Massana, Pere & Peña, Javier & Rieradevall, Joan & Montero, J. Ignacio, 2017. "Analysis of the technical, environmental and economic potential of phase change materials (PCM) for root zone heating in Mediterranean greenhouses," Renewable Energy, Elsevier, vol. 103(C), pages 570-581.
    3. Lee, Yohan & Lee, Dongyoung & Lee, Jong-Won & Seo, Yongwon, 2016. "Enclathration of CO2 as a co-guest of structure H hydrates and its implications for CO2 capture and sequestration," Applied Energy, Elsevier, vol. 163(C), pages 51-59.
    4. Babu, Ponnivalavan & Linga, Praveen & Kumar, Rajnish & Englezos, Peter, 2015. "A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture," Energy, Elsevier, vol. 85(C), pages 261-279.
    5. Tarnawski, V.R. & Leong, W.H. & Momose, T. & Hamada, Y., 2009. "Analysis of ground source heat pumps with horizontal ground heat exchangers for northern Japan," Renewable Energy, Elsevier, vol. 34(1), pages 127-134.
    6. Cuce, Erdem & Harjunowibowo, Dewanto & Cuce, Pinar Mert, 2016. "Renewable and sustainable energy saving strategies for greenhouse systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 34-59.
    7. Beatrice Castellani & Elena Morini & Mirko Filipponi & Andrea Nicolini & Massimo Palombo & Franco Cotana & Federico Rossi, 2014. "Clathrate Hydrates for Thermal Energy Storage in Buildings: Overview of Proper Hydrate-Forming Compounds," Sustainability, MDPI, vol. 6(10), pages 1-15, September.
    8. David Tilman & Kenneth G. Cassman & Pamela A. Matson & Rosamond Naylor & Stephen Polasky, 2002. "Agricultural sustainability and intensive production practices," Nature, Nature, vol. 418(6898), pages 671-677, August.
    9. Seiji Matsuo & Hiroki Umeda & Satoshi Takeya & Toyohisa Fujita, 2017. "A Feasibility Study on Hydrate-Based Technology for Transporting CO 2 from Industrial to Agricultural Areas," Energies, MDPI, vol. 10(5), pages 1-13, May.
    10. Hashimoto, Hidenori & Yamaguchi, Tsutomu & Kinoshita, Takahiro & Muromachi, Sanehiro, 2017. "Gas separation of flue gas by tetra-n-butylammonium bromide hydrates under moderate pressure conditions," Energy, Elsevier, vol. 129(C), pages 292-298.
    11. Ma, Z.W. & Zhang, P. & Bao, H.S. & Deng, S., 2016. "Review of fundamental properties of CO2 hydrates and CO2 capture and separation using hydration method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1273-1302.
    12. Zhang, P. & Ma, Z.W. & Wang, R.Z., 2010. "An overview of phase change material slurries: MPCS and CHS," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 598-614, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiaolin & Zhang, Fengyuan & Lipiński, Wojciech, 2020. "Research progress and challenges in hydrate-based carbon dioxide capture applications," Applied Energy, Elsevier, vol. 269(C).
    2. Zheng, Junjie & Bhatnagar, Krittika & Khurana, Maninder & Zhang, Peng & Zhang, Bao-Yong & Linga, Praveen, 2018. "Semiclathrate based CO2 capture from fuel gas mixture at ambient temperature: Effect of concentrations of tetra-n-butylammonium fluoride (TBAF) and kinetic additives," Applied Energy, Elsevier, vol. 217(C), pages 377-389.
    3. Zheng, Junjie & Zhang, Peng & Linga, Praveen, 2017. "Semiclathrate hydrate process for pre-combustion capture of CO2 at near ambient temperatures," Applied Energy, Elsevier, vol. 194(C), pages 267-278.
    4. Yang, Mingjun & Zhou, Hang & Wang, Pengfei & Song, Yongchen, 2018. "Effects of additives on continuous hydrate-based flue gas separation," Applied Energy, Elsevier, vol. 221(C), pages 374-385.
    5. Zhang, Fengyuan & Wang, Xiaolin & Lou, Xia & Lipiński, Wojciech, 2021. "The effect of sodium dodecyl sulfate and dodecyltrimethylammonium chloride on the kinetics of CO2 hydrate formation in the presence of tetra-n-butyl ammonium bromide for carbon capture applications," Energy, Elsevier, vol. 227(C).
    6. Chen, Zhaoyang & Fang, Jie & Xu, Chungang & Xia, Zhiming & Yan, Kefeng & Li, Xiaosen, 2020. "Carbon dioxide hydrate separation from Integrated Gasification Combined Cycle (IGCC) syngas by a novel hydrate heat-mass coupling method," Energy, Elsevier, vol. 199(C).
    7. Barkat Rabbi & Zhong-Hua Chen & Subbu Sethuvenkatraman, 2019. "Protected Cropping in Warm Climates: A Review of Humidity Control and Cooling Methods," Energies, MDPI, vol. 12(14), pages 1-24, July.
    8. Kim, Soyoung & Choi, Sung-Deuk & Seo, Yongwon, 2017. "CO2 capture from flue gas using clathrate formation in the presence of thermodynamic promoters," Energy, Elsevier, vol. 118(C), pages 950-956.
    9. Veluswamy, Hari Prakash & Kumar, Asheesh & Premasinghe, Kulesha & Linga, Praveen, 2017. "Effect of guest gas on the mixed tetrahydrofuran hydrate kinetics in a quiescent system," Applied Energy, Elsevier, vol. 207(C), pages 573-583.
    10. Wang, Yan & Zhong, Dong-Liang & Englezos, Peter & Yan, Jin & Ge, Bin-Bin, 2020. "Kinetic study of semiclathrate hydrates formed with CO2 in the presence of tetra-n-butyl ammonium bromide and tetra-n-butyl phosphonium bromide," Energy, Elsevier, vol. 212(C).
    11. Seiji Matsuo & Hiroki Umeda & Satoshi Takeya & Toyohisa Fujita, 2017. "A Feasibility Study on Hydrate-Based Technology for Transporting CO 2 from Industrial to Agricultural Areas," Energies, MDPI, vol. 10(5), pages 1-13, May.
    12. He, Tianbiao & Chong, Zheng Rong & Zheng, Junjie & Ju, Yonglin & Linga, Praveen, 2019. "LNG cold energy utilization: Prospects and challenges," Energy, Elsevier, vol. 170(C), pages 557-568.
    13. Li, Bo & Liang, Yun-Pei & Li, Xiao-Sen & Zhou, Lei, 2016. "A pilot-scale study of gas production from hydrate deposits with two-spot horizontal well system," Applied Energy, Elsevier, vol. 176(C), pages 12-21.
    14. Chiara Bersani & Ahmed Ouammi & Roberto Sacile & Enrico Zero, 2020. "Model Predictive Control of Smart Greenhouses as the Path towards Near Zero Energy Consumption," Energies, MDPI, vol. 13(14), pages 1-17, July.
    15. Xia, Zhi-ming & Li, Xiao-sen & Chen, Zhao-yang & Li, Gang & Cai, Jing & Wang, Yi & Yan, Ke-feng & Xu, Chun-gang, 2017. "Hydrate-based acidic gases capture for clean methane with new synergic additives," Applied Energy, Elsevier, vol. 207(C), pages 584-593.
    16. Renault-Crispo, Jean-Sébastien & Coulombe, Sylvain & Servio, Phillip, 2017. "Kinetics of carbon dioxide gas hydrates with tetrabutylammonium bromide and functionalized multi-walled carbon nanotubes," Energy, Elsevier, vol. 128(C), pages 414-420.
    17. Wang, Xiaolin & Dennis, Mike, 2016. "Characterisation of thermal properties and charging performance of semi-clathrate hydrates for cold storage applications," Applied Energy, Elsevier, vol. 167(C), pages 59-69.
    18. Kim, Hyunho & Zheng, Junjie & Yin, Zhenyuan & Kumar, Sreekala & Tee, Jackson & Seo, Yutaek & Linga, Praveen, 2022. "An electrical resistivity-based method for measuring semi-clathrate hydrate formation kinetics: Application for cold storage and transport," Applied Energy, Elsevier, vol. 308(C).
    19. Tataraki, Kalliopi G. & Kavvadias, Konstantinos C. & Maroulis, Zacharias B., 2019. "Combined cooling heating and power systems in greenhouses. Grassroots and retrofit design," Energy, Elsevier, vol. 189(C).
    20. Li, Bo & Liu, Sheng-Dong & Liang, Yun-Pei & Liu, Hang, 2018. "The use of electrical heating for the enhancement of gas recovery from methane hydrate in porous media," Applied Energy, Elsevier, vol. 227(C), pages 694-702.

    More about this item

    Keywords

    CO2 separation; CO2 storage; flue gas; gas hydrate; horticulture;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:927-:d:103539. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.