IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v212y2020ics0360544220318053.html
   My bibliography  Save this article

Kinetic study of semiclathrate hydrates formed with CO2 in the presence of tetra-n-butyl ammonium bromide and tetra-n-butyl phosphonium bromide

Author

Listed:
  • Wang, Yan
  • Zhong, Dong-Liang
  • Englezos, Peter
  • Yan, Jin
  • Ge, Bin-Bin

Abstract

The kinetics of semiclathrate hydrates formation with CO2 in the presence of tetra-n-butyl ammonium bromide (TBAB), tetra-n-butyl phosphonium bromide (TBPB), and TBAB + TBPB were investigated. The experiments were conducted at the stoichiometric concentration of TBAB hydrate (2.57 mol%) and three subcoolings (ΔT = 6 K, 9 K, and 12 K) with the initial pressure fixed at 2.8 MPa. It was found that adding TBPB into the TBAB solution can promote hydrate nucleation, and this promotion effect at a lower subcooling (ΔT = 6 K) was stronger compared to that at higher subcoolings (ΔT = 9 K and 12 K). The gas consumption obtained in TBAB, TBPB, and TBAB + TBPB solutions decreased with the increase of subcooling, despite the increase of the rate of hydrate growth. At a given subcooling, gas consumption (CO2 uptake) in TBAB + TBPB solutions was greater than that in TBAB and TBPB solutions, indicating that hydrate formation kinetics and the CO2 storage capacity were improved in the TBAB + TBPB solution. The largest gas consumption was obtained at ΔT = 6 K in the TBAB + TBPB solution, which was 28.7% and 17.2% larger than those obtained in TBAB and TBPB solutions, respectively. Therefore, a mixture of TBAB + TBPB is a promising option to improve the kinetics of semiclathrate hydrate formation with CO2.

Suggested Citation

  • Wang, Yan & Zhong, Dong-Liang & Englezos, Peter & Yan, Jin & Ge, Bin-Bin, 2020. "Kinetic study of semiclathrate hydrates formed with CO2 in the presence of tetra-n-butyl ammonium bromide and tetra-n-butyl phosphonium bromide," Energy, Elsevier, vol. 212(C).
  • Handle: RePEc:eee:energy:v:212:y:2020:i:c:s0360544220318053
    DOI: 10.1016/j.energy.2020.118697
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220318053
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118697?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Babu, Ponnivalavan & Linga, Praveen & Kumar, Rajnish & Englezos, Peter, 2015. "A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture," Energy, Elsevier, vol. 85(C), pages 261-279.
    2. Hashimoto, Hidenori & Yamaguchi, Tsutomu & Kinoshita, Takahiro & Muromachi, Sanehiro, 2017. "Gas separation of flue gas by tetra-n-butylammonium bromide hydrates under moderate pressure conditions," Energy, Elsevier, vol. 129(C), pages 292-298.
    3. Ali Saleh Bairq, Zain & Gao, Hongxia & Huang, Yufei & Zhang, Haiyan & Liang, Zhiwu, 2019. "Enhancing CO2 desorption performance in rich MEA solution by addition of SO42−/ZrO2/SiO2 bifunctional catalyst," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    4. Wang, Yan & Zhong, Dong-Liang & Li, Zheng & Li, Jian-Bo, 2020. "Application of tetra-n-butyl ammonium bromide semi-clathrate hydrate for CO2 capture from unconventional natural gases," Energy, Elsevier, vol. 197(C).
    5. Yi, Jie & Zhong, Dong-Liang & Yan, Jin & Lu, Yi-Yu, 2019. "Impacts of the surfactant sulfonated lignin on hydrate based CO2 capture from a CO2/CH4 gas mixture," Energy, Elsevier, vol. 171(C), pages 61-68.
    6. Chen, Zhaoyang & Fang, Jie & Xu, Chungang & Xia, Zhiming & Yan, Kefeng & Li, Xiaosen, 2020. "Carbon dioxide hydrate separation from Integrated Gasification Combined Cycle (IGCC) syngas by a novel hydrate heat-mass coupling method," Energy, Elsevier, vol. 199(C).
    7. Yang, Mingjun & Song, Yongchen & Jiang, Lanlan & Zhao, Yuechao & Ruan, Xuke & Zhang, Yi & Wang, Shanrong, 2014. "Hydrate-based technology for CO2 capture from fossil fuel power plants," Applied Energy, Elsevier, vol. 116(C), pages 26-40.
    8. Li, Zheng & Zhong, Dong-Liang & Lu, Yi-Yu & Yan, Jin & Zou, Zhen-Lin, 2017. "Preferential enclathration of CO2 into tetra-n-butyl phosphonium bromide semiclathrate hydrate in moderate operating conditions: Application for CO2 capture from shale gas," Applied Energy, Elsevier, vol. 199(C), pages 370-381.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Kairan & Guo, Weimin & Zhang, Peng, 2024. "Cold energy transport and release characteristics of CO2+TBAB hydrate slurry flow with hydrate dissociation," Energy, Elsevier, vol. 294(C).
    2. Zang, Xiaoya & Wang, Jing & He, Yong & Zhou, Xuebing & Liang, Deqing, 2022. "Formation kinetics and microscopic characteristics of synthesized ternary gas mixture hydrates in TBAB aqueous solutions," Energy, Elsevier, vol. 245(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiaolin & Zhang, Fengyuan & Lipiński, Wojciech, 2020. "Research progress and challenges in hydrate-based carbon dioxide capture applications," Applied Energy, Elsevier, vol. 269(C).
    2. Foroutan, Shima & Mohsenzade, Hanie & Dashti, Ali & Roosta, Hadi, 2021. "New insights into the evaluation of kinetic hydrate inhibitors and energy consumption in rocking and stirred cells," Energy, Elsevier, vol. 218(C).
    3. Yan, Jin & Lu, Yi-Yu & Zhong, Dong-Liang & Zou, Zhen-Lin & Li, Jian-Bo, 2019. "Enhanced methane recovery from low-concentration coalbed methane by gas hydrate formation in graphite nanofluids," Energy, Elsevier, vol. 180(C), pages 728-736.
    4. Wang, Yan & Zhong, Dong-Liang & Li, Zheng & Li, Jian-Bo, 2020. "Application of tetra-n-butyl ammonium bromide semi-clathrate hydrate for CO2 capture from unconventional natural gases," Energy, Elsevier, vol. 197(C).
    5. Liu, Fa-Ping & Li, Ai-Rong & Qing, Sheng-Lan & Luo, Ze-Dong & Ma, Yu-Ling, 2022. "Formation kinetics, mechanism of CO2 hydrate and its applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    6. Remi-Erempagamo Tariyemienyo Meindinyo & Thor Martin Svartaas, 2016. "Gas Hydrate Growth Kinetics: A Parametric Study," Energies, MDPI, vol. 9(12), pages 1-29, December.
    7. Cheng, Zucheng & Sun, Lintao & Liu, Yingying & Jiang, Lanlan & Chen, Bingbing & Song, Yongchen, 2023. "Study on the micro-macro kinetic and amino acid-enhanced separation of CO2-CH4 via sII hydrate," Renewable Energy, Elsevier, vol. 218(C).
    8. Chen, Zhaoyang & Fang, Jie & Xu, Chungang & Xia, Zhiming & Yan, Kefeng & Li, Xiaosen, 2020. "Carbon dioxide hydrate separation from Integrated Gasification Combined Cycle (IGCC) syngas by a novel hydrate heat-mass coupling method," Energy, Elsevier, vol. 199(C).
    9. Muromachi, Sanehiro, 2021. "CO2 capture properties of semiclathrate hydrates formed with tetra-n-butylammonium and tetra-n-butylphosphonium salts from H2 + CO2 mixed gas," Energy, Elsevier, vol. 223(C).
    10. Ouyang, Qian & Zheng, Junjie & Pandey, Jyoti Shanker & von Solms, Nicolas & Linga, Praveen, 2024. "Coupling amino acid injection and slow depressurization with hydrate swapping exploitation: An effective strategy to enhance in-situ CO2 storage in hydrate-bearing sediment," Applied Energy, Elsevier, vol. 366(C).
    11. Wang, Fang & Mu, Jinchi & Lin, Wenjing & Cao, Yuehan & Wang, Yuhan & Leng, Shuai & Guo, Lihong & Zhou, Ying, 2024. "Post-combustion CO2 capture via the hydrate formation at the gas-liquid-solid interface induced by the non-surfactant graphene oxide," Energy, Elsevier, vol. 290(C).
    12. Ge, Bin-Bin & Li, Xi-Yue & Zhong, Dong-Liang & Lu, Yi-Yu, 2022. "Investigation of natural gas storage and transportation by gas hydrate formation in the presence of bio-surfactant sulfonated lignin," Energy, Elsevier, vol. 244(PA).
    13. Zheng, Junjie & Bhatnagar, Krittika & Khurana, Maninder & Zhang, Peng & Zhang, Bao-Yong & Linga, Praveen, 2018. "Semiclathrate based CO2 capture from fuel gas mixture at ambient temperature: Effect of concentrations of tetra-n-butylammonium fluoride (TBAF) and kinetic additives," Applied Energy, Elsevier, vol. 217(C), pages 377-389.
    14. Satoshi Takeya & Sanehiro Muromachi & Tatsuo Maekawa & Yoshitaka Yamamoto & Hiroko Mimachi & Takahiro Kinoshita & Tetsuro Murayama & Hiroki Umeda & Dong-Hyuk Ahn & Yasunaga Iwasaki & Hidenori Hashimot, 2017. "Design of Ecological CO 2 Enrichment System for Greenhouse Production using TBAB + CO 2 Semi-Clathrate Hydrate," Energies, MDPI, vol. 10(7), pages 1-12, July.
    15. Zheng, Junjie & Zhang, Peng & Linga, Praveen, 2017. "Semiclathrate hydrate process for pre-combustion capture of CO2 at near ambient temperatures," Applied Energy, Elsevier, vol. 194(C), pages 267-278.
    16. Zhong, Dong-Liang & Wang, Wen-Chun & Zou, Zhen-Lin & Lu, Yi-Yu & Yan, Jin & Ding, Kun, 2018. "Investigation on methane recovery from low-concentration coal mine gas by tetra-n-butyl ammonium chloride semiclathrate hydrate formation," Applied Energy, Elsevier, vol. 227(C), pages 686-693.
    17. Muromachi, Sanehiro & Ikeda, Kosuke & Maesaka, Kazuki & Miyamoto, Hiroyuki, 2024. "Biogas separation by semiclathrate hydrates formed with tetra-n-butylammonium and tetra-n-butylphosphonium salts," Energy, Elsevier, vol. 290(C).
    18. Xu, Gang & Xu, Chun-Gang & Wang, Min & Cai, Jing & Chen, Zhao-Yang & Li, Xiao-Sen, 2021. "Influence of nickel foam on kinetics and separation efficiency of hydrate-based Carbon dioxide separation," Energy, Elsevier, vol. 231(C).
    19. Zang, Xiaoya & Wang, Jing & He, Yong & Zhou, Xuebing & Liang, Deqing, 2022. "Formation kinetics and microscopic characteristics of synthesized ternary gas mixture hydrates in TBAB aqueous solutions," Energy, Elsevier, vol. 245(C).
    20. Wang, Yiwei & Deng, Ye & Guo, Xuqiang & Sun, Qiang & Liu, Aixian & Zhang, Guangqing & Yue, Gang & Yang, Lanying, 2018. "Experimental and modeling investigation on separation of methane from coal seam gas (CSG) using hydrate formation," Energy, Elsevier, vol. 150(C), pages 377-395.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:212:y:2020:i:c:s0360544220318053. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.