IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v290y2024ics0360544223035715.html
   My bibliography  Save this article

Post-combustion CO2 capture via the hydrate formation at the gas-liquid-solid interface induced by the non-surfactant graphene oxide

Author

Listed:
  • Wang, Fang
  • Mu, Jinchi
  • Lin, Wenjing
  • Cao, Yuehan
  • Wang, Yuhan
  • Leng, Shuai
  • Guo, Lihong
  • Zhou, Ying

Abstract

CO2 capture is currently the most effective way to reduce global carbon emissions, which leads to the emergence of novel gas hydrate method. In this work, the significant role of graphene oxide (GO) in enhancing the dynamic behaviors of post-combustion CO2 capture via the hydrate formation was investigated. Firstly, at the gas-liquid interface, the induction of GO increased the amount of gas transfer, and shortened the induction time for the hydrate nucleation at the heterogeneous nucleation sites provided by GO, which attracted CO2 molecules assembling on the GO layer to participate in the hydrate nucleation based on the molecular dynamics (MD) simulations. More importantly, the hydrate growth rate was nearly doubled in 0.05 wt% GO and 4 mol% tetrahydrofuran (THF) mixed accelerators than that in pure THF and sodium dodecyl sulfate (SDS) mixed systems, which greatly boosted the gas storage capacity of CO2 in the form of compact solid hydrates. Consequently, CO2 separation efficiency achieved up to 76 % in the GO based accelerators, enhanced by 23.2 % compared to that in pure THF and the SDS mixed systems. The present study could provide insights into the development of new type of nanomaterial accelerators for CO2 capture via the gas hydrate method.

Suggested Citation

  • Wang, Fang & Mu, Jinchi & Lin, Wenjing & Cao, Yuehan & Wang, Yuhan & Leng, Shuai & Guo, Lihong & Zhou, Ying, 2024. "Post-combustion CO2 capture via the hydrate formation at the gas-liquid-solid interface induced by the non-surfactant graphene oxide," Energy, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544223035715
    DOI: 10.1016/j.energy.2023.130177
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223035715
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.130177?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheng, Zucheng & Sun, Lintao & Liu, Yingying & Xu, Huazheng & Jiang, Lanlan & Wang, Lei & Song, Yongchen, 2023. "Multiscale analysis of the effect of the structural transformation of TBAB semi-clathrate hydrate on CO2 capture efficiency," Energy, Elsevier, vol. 280(C).
    2. Nguyen, Ngoc N. & La, Vinh T. & Huynh, Chinh D. & Nguyen, Anh V., 2022. "Technical and economic perspectives of hydrate-based carbon dioxide capture," Applied Energy, Elsevier, vol. 307(C).
    3. Liu, Ni & Chen, Litao & Liu, Caixia & Yang, Liang & Liu, Daoping, 2020. "Experimental study of carbon dioxide hydrate formation in the presence of graphene oxide," Energy, Elsevier, vol. 211(C).
    4. Zhao, Qi & Chen, Zhao-Yang & Li, Xiao-Sen & Xia, Zhi-Ming, 2023. "Experimental study of CO2 hydrate formation under an electrostatic field," Energy, Elsevier, vol. 272(C).
    5. Babu, Ponnivalavan & Ong, Hong Wen Nelson & Linga, Praveen, 2016. "A systematic kinetic study to evaluate the effect of tetrahydrofuran on the clathrate process for pre-combustion capture of carbon dioxide," Energy, Elsevier, vol. 94(C), pages 431-442.
    6. Yang, Mingjun & Jing, Wen & Zhao, Jiafei & Ling, Zheng & Song, Yongchen, 2016. "Promotion of hydrate-based CO2 capture from flue gas by additive mixtures (THF (tetrahydrofuran) + TBAB (tetra-n-butyl ammonium bromide))," Energy, Elsevier, vol. 106(C), pages 546-553.
    7. Shuo Yan & Wenjie Dai & Shuli Wang & Yongchao Rao & Shidong Zhou, 2018. "Graphene Oxide: An Effective Promoter for CO 2 Hydrate Formation," Energies, MDPI, vol. 11(7), pages 1-13, July.
    8. Nashed, Omar & Partoon, Behzad & Lal, Bhajan & Sabil, Khalik M. & Shariff, Azmi Mohd, 2019. "Investigation of functionalized carbon nanotubes' performance on carbon dioxide hydrate formation," Energy, Elsevier, vol. 174(C), pages 602-610.
    9. Hashimoto, Hidenori & Yamaguchi, Tsutomu & Kinoshita, Takahiro & Muromachi, Sanehiro, 2017. "Gas separation of flue gas by tetra-n-butylammonium bromide hydrates under moderate pressure conditions," Energy, Elsevier, vol. 129(C), pages 292-298.
    10. Khatib, Hisham, 2011. "IEA World Energy Outlook 2010--A comment," Energy Policy, Elsevier, vol. 39(5), pages 2507-2511, May.
    11. Liu, Fa-Ping & Li, Ai-Rong & Qing, Sheng-Lan & Luo, Ze-Dong & Ma, Yu-Ling, 2022. "Formation kinetics, mechanism of CO2 hydrate and its applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    12. Li, Xiao-Sen & Xu, Chun-Gang & Chen, Zhao-Yang & Wu, Hui-Jie, 2010. "Tetra-n-butyl ammonium bromide semi-clathrate hydrate process for post-combustion capture of carbon dioxide in the presence of dodecyl trimethyl ammonium chloride," Energy, Elsevier, vol. 35(9), pages 3902-3908.
    13. Chen, Zhaoyang & Fang, Jie & Xu, Chungang & Xia, Zhiming & Yan, Kefeng & Li, Xiaosen, 2020. "Carbon dioxide hydrate separation from Integrated Gasification Combined Cycle (IGCC) syngas by a novel hydrate heat-mass coupling method," Energy, Elsevier, vol. 199(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mu, Liang & Zhou, Ziqi & Zhao, Huixing & Zhu, Xiaohai & Cui, Qingyan, 2024. "High-efficiency recovery of methane from coal bed gas via hydrate formation in emulsions," Energy, Elsevier, vol. 290(C).
    2. Kim, Soyoung & Choi, Sung-Deuk & Seo, Yongwon, 2017. "CO2 capture from flue gas using clathrate formation in the presence of thermodynamic promoters," Energy, Elsevier, vol. 118(C), pages 950-956.
    3. Cheng, Zucheng & Li, Shaohua & Liu, Yu & Zhang, Yi & Ling, Zheng & Yang, Mingjun & Jiang, Lanlan & Song, Yongchen, 2022. "Post-combustion CO2 capture and separation in flue gas based on hydrate technology:A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    4. Wang, Yiwei & Deng, Ye & Guo, Xuqiang & Sun, Qiang & Liu, Aixian & Zhang, Guangqing & Yue, Gang & Yang, Lanying, 2018. "Experimental and modeling investigation on separation of methane from coal seam gas (CSG) using hydrate formation," Energy, Elsevier, vol. 150(C), pages 377-395.
    5. Aminnaji, Morteza & Qureshi, M Fahed & Dashti, Hossein & Hase, Alfred & Mosalanejad, Abdolali & Jahanbakhsh, Amir & Babaei, Masoud & Amiri, Amirpiran & Maroto-Valer, Mercedes, 2024. "CO2 Gas hydrate for carbon capture and storage applications – Part 1," Energy, Elsevier, vol. 300(C).
    6. Yang, Mingjun & Zhou, Hang & Wang, Pengfei & Song, Yongchen, 2018. "Effects of additives on continuous hydrate-based flue gas separation," Applied Energy, Elsevier, vol. 221(C), pages 374-385.
    7. Wang, Yan & Zhong, Dong-Liang & Englezos, Peter & Yan, Jin & Ge, Bin-Bin, 2020. "Kinetic study of semiclathrate hydrates formed with CO2 in the presence of tetra-n-butyl ammonium bromide and tetra-n-butyl phosphonium bromide," Energy, Elsevier, vol. 212(C).
    8. Muromachi, Sanehiro, 2021. "CO2 capture properties of semiclathrate hydrates formed with tetra-n-butylammonium and tetra-n-butylphosphonium salts from H2 + CO2 mixed gas," Energy, Elsevier, vol. 223(C).
    9. Adeel ur Rehman & Bhajan Lal, 2022. "RETRACTED: Gas Hydrate-Based CO 2 Capture: A Journey from Batch to Continuous," Energies, MDPI, vol. 15(21), pages 1-27, November.
    10. Zhong, Dong-Liang & Wang, Wen-Chun & Zou, Zhen-Lin & Lu, Yi-Yu & Yan, Jin & Ding, Kun, 2018. "Investigation on methane recovery from low-concentration coal mine gas by tetra-n-butyl ammonium chloride semiclathrate hydrate formation," Applied Energy, Elsevier, vol. 227(C), pages 686-693.
    11. Zhou, Shi-Dong & Xiao, Yan-Yun & Ni, Xing-Ya & Li, Xiao-Yan & Wu, Zhi-Min & Liu, Yang & Lv, Xiao-Fang, 2024. "Kinetics studies of CO2 hydrate formation in the presence of l-methionine coupled with multi-walled carbon nanotubes," Energy, Elsevier, vol. 298(C).
    12. Deng, Zhixia & Fan, Shuanshi & Wang, Yanhong & Lang, Xuemei & Li, Gang & Liu, Faping & Li, Mengyang, 2023. "High storage capacity and high formation rate of carbon dioxide hydrates via super-hydrophobic fluorinated graphenes," Energy, Elsevier, vol. 264(C).
    13. Aminnaji, Morteza & Qureshi, M Fahed & Dashti, Hossein & Hase, Alfred & Mosalanejad, Abdolali & Jahanbakhsh, Amir & Babaei, Masoud & Amiri, Amirpiran & Maroto-Valer, Mercedes, 2024. "CO2 gas hydrate for carbon capture and storage applications – Part 2," Energy, Elsevier, vol. 300(C).
    14. Li, Zheng & Zhong, Dong-Liang & Lu, Yi-Yu & Yan, Jin & Zou, Zhen-Lin, 2017. "Preferential enclathration of CO2 into tetra-n-butyl phosphonium bromide semiclathrate hydrate in moderate operating conditions: Application for CO2 capture from shale gas," Applied Energy, Elsevier, vol. 199(C), pages 370-381.
    15. Dong, Hongsheng & Wang, Jiaqi & Xie, Zhuoxue & Wang, Bin & Zhang, Lunxiang & Shi, Quan, 2021. "Potential applications based on the formation and dissociation of gas hydrates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    16. Zhang, Fengyuan & Wang, Xiaolin & Lou, Xia & Lipiński, Wojciech, 2021. "The effect of sodium dodecyl sulfate and dodecyltrimethylammonium chloride on the kinetics of CO2 hydrate formation in the presence of tetra-n-butyl ammonium bromide for carbon capture applications," Energy, Elsevier, vol. 227(C).
    17. Wang, Xiaolin & Zhang, Fengyuan & Lipiński, Wojciech, 2020. "Research progress and challenges in hydrate-based carbon dioxide capture applications," Applied Energy, Elsevier, vol. 269(C).
    18. Nguyen, Ngoc N. & La, Vinh T. & Huynh, Chinh D. & Nguyen, Anh V., 2022. "Technical and economic perspectives of hydrate-based carbon dioxide capture," Applied Energy, Elsevier, vol. 307(C).
    19. Foroutan, Shima & Mohsenzade, Hanie & Dashti, Ali & Roosta, Hadi, 2021. "New insights into the evaluation of kinetic hydrate inhibitors and energy consumption in rocking and stirred cells," Energy, Elsevier, vol. 218(C).
    20. Chun-Gang Xu & Min Wang & Gang Xu & Xiao-Sen Li & Wei Zhang & Jing Cai & Zhao-Yang Chen, 2021. "The Relationship between Thermal Characteristics and Microstructure/Composition of Carbon Dioxide Hydrate in the Presence of Cyclopentane," Energies, MDPI, vol. 14(4), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544223035715. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.