IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics0360544224035230.html
   My bibliography  Save this article

Thermal analysis and kinetic investigation of using a hybrid adsorption-hydration method to promote CO2 capture

Author

Listed:
  • Wu, Liang-Meng
  • Xie, Feng-Mei
  • Zhong, Dong-Liang
  • Li, Xi-Yue
  • Yan, Jin

Abstract

In this work, a hybrid adsorption-hydration method was utilized to promote CO2 capture. The CO2 capture performance in the fixed bed of coal particles was assessed at various water saturations (0 %, 20 %, 40 %, 70 %, and 100 %), 277.15 K, and 3.2 MPa. It was found that gas consumption at 100 % water saturation increased by 45 % compared to that at 0 % water saturation (dry coal particles). Moreover, as the water saturation increased, CO2 capture became dominated by hydrate formation rather than gas adsorption. The thermal analysis for CO2 capture at 0 % and 100 % water saturation detected the exothermic peaks associated with CO2 adsorption and CO2 hydrate formation, as well as the endothermic peaks corresponding to CO2 desorption and CO2 hydrate dissociation. This confirms that CO2 capture in the fixed bed of water-saturated coal particles consists of CO2 adsorption followed by hydrate formation. The morphologies of CO2 hydrate formation in the fixed bed of 100 % water-saturated coal particles were observed, and the mechanism of CO2 capture using the hybrid adsorption-hydration method was illustrated based on the thermal analysis and kinetic investigations. It was also found that after the adsorption-hydration process, the average cumulative pore volume of the coal particles decreased by 14.47 % compared to the original coal particles, and the micropores and mesopores were predominantly affected. Therefore, utilizing the hybrid adsorption-hydration process in a fixed bed of coal particles provides a promising method to enhance CO2 capture.

Suggested Citation

  • Wu, Liang-Meng & Xie, Feng-Mei & Zhong, Dong-Liang & Li, Xi-Yue & Yan, Jin, 2024. "Thermal analysis and kinetic investigation of using a hybrid adsorption-hydration method to promote CO2 capture," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224035230
    DOI: 10.1016/j.energy.2024.133745
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224035230
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133745?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vasudevan, Suraj & Farooq, Shamsuzzaman & Karimi, Iftekhar A. & Saeys, Mark & Quah, Michael C.G. & Agrawal, Rakesh, 2016. "Energy penalty estimates for CO2 capture: Comparison between fuel types and capture-combustion modes," Energy, Elsevier, vol. 103(C), pages 709-714.
    2. Babu, Ponnivalavan & Linga, Praveen & Kumar, Rajnish & Englezos, Peter, 2015. "A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture," Energy, Elsevier, vol. 85(C), pages 261-279.
    3. Yagihara, Koki & Ohno, Hajime & Guzman-Urbina, Alexander & Ni, Jialing & Fukushima, Yasuhiro, 2022. "Analyzing flue gas properties emitted from power and industrial sectors toward heat-integrated carbon capture," Energy, Elsevier, vol. 250(C).
    4. Song, Chun Feng & Kitamura, Yutaka & Li, Shu Hong, 2012. "Evaluation of Stirling cooler system for cryogenic CO2 capture," Applied Energy, Elsevier, vol. 98(C), pages 491-501.
    5. Wang, Yi & Kou, Xuan & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu, 2020. "Sediment deformation and strain evaluation during methane hydrate dissociation in a novel experimental apparatus," Applied Energy, Elsevier, vol. 262(C).
    6. Aghaie, Mahsa & Rezaei, Nima & Zendehboudi, Sohrab, 2018. "A systematic review on CO2 capture with ionic liquids: Current status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 502-525.
    7. Liu, Jun & Ding, Jia-Xiang & Liang, De-Qing, 2018. "Experimental study on hydrate-based gas separation of mixed CH4/CO2 using unstable ice in a silica gel bed," Energy, Elsevier, vol. 157(C), pages 54-64.
    8. Pandey, Gaurav & Poothia, Tejaswa & Kumar, Asheesh, 2022. "Hydrate based carbon capture and sequestration (HBCCS): An innovative approach towards decarbonization," Applied Energy, Elsevier, vol. 326(C).
    9. Li, Shuangjun & Deng, Shuai & Zhao, Li & Zhao, Ruikai & Lin, Meng & Du, Yanping & Lian, Yahui, 2018. "Mathematical modeling and numerical investigation of carbon capture by adsorption: Literature review and case study," Applied Energy, Elsevier, vol. 221(C), pages 437-449.
    10. Gorus, Muhammed Sehid & Aydin, Mucahit, 2019. "The relationship between energy consumption, economic growth, and CO2 emission in MENA countries: Causality analysis in the frequency domain," Energy, Elsevier, vol. 168(C), pages 815-822.
    11. Zhong, Dong-Liang & Wang, Jia-Le & Lu, Yi-Yu & Li, Zheng & Yan, Jin, 2016. "Precombustion CO2 capture using a hybrid process of adsorption and gas hydrate formation," Energy, Elsevier, vol. 102(C), pages 621-629.
    12. Ma, Z.W. & Zhang, P. & Bao, H.S. & Deng, S., 2016. "Review of fundamental properties of CO2 hydrates and CO2 capture and separation using hydration method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1273-1302.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiaolin & Zhang, Fengyuan & Lipiński, Wojciech, 2020. "Research progress and challenges in hydrate-based carbon dioxide capture applications," Applied Energy, Elsevier, vol. 269(C).
    2. Kim, Soyoung & Choi, Sung-Deuk & Seo, Yongwon, 2017. "CO2 capture from flue gas using clathrate formation in the presence of thermodynamic promoters," Energy, Elsevier, vol. 118(C), pages 950-956.
    3. Li, Zheng & Zhong, Dong-Liang & Lu, Yi-Yu & Yan, Jin & Zou, Zhen-Lin, 2017. "Preferential enclathration of CO2 into tetra-n-butyl phosphonium bromide semiclathrate hydrate in moderate operating conditions: Application for CO2 capture from shale gas," Applied Energy, Elsevier, vol. 199(C), pages 370-381.
    4. Zheng, Junjie & Zhang, Peng & Linga, Praveen, 2017. "Semiclathrate hydrate process for pre-combustion capture of CO2 at near ambient temperatures," Applied Energy, Elsevier, vol. 194(C), pages 267-278.
    5. Lai, Xi & Zhao, Li & Nie, Xianhua & Zhang, Yue & Zhang, Qi, 2023. "Hydrate-based composition separation of R32/R1234yf mixed working fluids applied in composition-adjustable organic Rankine cycle," Energy, Elsevier, vol. 284(C).
    6. Chen, Zhaoyang & Fang, Jie & Xu, Chungang & Xia, Zhiming & Yan, Kefeng & Li, Xiaosen, 2020. "Carbon dioxide hydrate separation from Integrated Gasification Combined Cycle (IGCC) syngas by a novel hydrate heat-mass coupling method," Energy, Elsevier, vol. 199(C).
    7. Zheng, Junjie & Bhatnagar, Krittika & Khurana, Maninder & Zhang, Peng & Zhang, Bao-Yong & Linga, Praveen, 2018. "Semiclathrate based CO2 capture from fuel gas mixture at ambient temperature: Effect of concentrations of tetra-n-butylammonium fluoride (TBAF) and kinetic additives," Applied Energy, Elsevier, vol. 217(C), pages 377-389.
    8. Wang, Shuai & Sun, Huilian & Liu, Huiquan & Xi, Dezhi & Long, Jiayi & Zhang, Lunxiang & Zhao, Jiafei & Song, Yongchen & Shi, Changrui & Ling, Zheng, 2024. "Novel vermiculite/tannic acid composite aerogels with outstanding CO2 storage via enhanced gas hydrate formation," Energy, Elsevier, vol. 289(C).
    9. Xu, Gang & Xu, Chun-Gang & Wang, Min & Cai, Jing & Chen, Zhao-Yang & Li, Xiao-Sen, 2021. "Influence of nickel foam on kinetics and separation efficiency of hydrate-based Carbon dioxide separation," Energy, Elsevier, vol. 231(C).
    10. Veluswamy, Hari Prakash & Kumar, Asheesh & Seo, Yutaek & Lee, Ju Dong & Linga, Praveen, 2018. "A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates," Applied Energy, Elsevier, vol. 216(C), pages 262-285.
    11. Zhang, Qiang & Zheng, Junjie & Zhang, Baoyong & Linga, Praveen, 2023. "Kinetic evaluation of hydrate-based coalbed methane recovery process promoted by structure II thermodynamic promoters and amino acids," Energy, Elsevier, vol. 274(C).
    12. Zhang, Fengyuan & Wang, Xiaolin & Lou, Xia & Lipiński, Wojciech, 2021. "The effect of sodium dodecyl sulfate and dodecyltrimethylammonium chloride on the kinetics of CO2 hydrate formation in the presence of tetra-n-butyl ammonium bromide for carbon capture applications," Energy, Elsevier, vol. 227(C).
    13. Seiji Matsuo & Hiroki Umeda & Satoshi Takeya & Toyohisa Fujita, 2017. "A Feasibility Study on Hydrate-Based Technology for Transporting CO 2 from Industrial to Agricultural Areas," Energies, MDPI, vol. 10(5), pages 1-13, May.
    14. Foroutan, Shima & Mohsenzade, Hanie & Dashti, Ali & Roosta, Hadi, 2021. "New insights into the evaluation of kinetic hydrate inhibitors and energy consumption in rocking and stirred cells," Energy, Elsevier, vol. 218(C).
    15. Xia, Zhi-ming & Li, Xiao-sen & Chen, Zhao-yang & Li, Gang & Cai, Jing & Wang, Yi & Yan, Ke-feng & Xu, Chun-gang, 2017. "Hydrate-based acidic gases capture for clean methane with new synergic additives," Applied Energy, Elsevier, vol. 207(C), pages 584-593.
    16. Renault-Crispo, Jean-Sébastien & Coulombe, Sylvain & Servio, Phillip, 2017. "Kinetics of carbon dioxide gas hydrates with tetrabutylammonium bromide and functionalized multi-walled carbon nanotubes," Energy, Elsevier, vol. 128(C), pages 414-420.
    17. Satoshi Takeya & Sanehiro Muromachi & Tatsuo Maekawa & Yoshitaka Yamamoto & Hiroko Mimachi & Takahiro Kinoshita & Tetsuro Murayama & Hiroki Umeda & Dong-Hyuk Ahn & Yasunaga Iwasaki & Hidenori Hashimot, 2017. "Design of Ecological CO 2 Enrichment System for Greenhouse Production using TBAB + CO 2 Semi-Clathrate Hydrate," Energies, MDPI, vol. 10(7), pages 1-12, July.
    18. Wang, Yiwei & Du, Mei & Guo, Xuqiang & Sun, Qiang & Liu, Aixian & Chen, Bo & Chen, Guangjin & Sun, Changyu & Yang, Lanying, 2017. "Experiments and simulations for continuous recovery of methane from coal seam gas (CSG) utilizing hydrate formation," Energy, Elsevier, vol. 129(C), pages 28-41.
    19. Zhang, Xuemin & Yang, Huijie & Huang, Tingting & Li, Jinping & Li, Pengyu & Wu, Qingbai & Wang, Yingmei & Zhang, Peng, 2022. "Research progress of molecular dynamics simulation on the formation-decomposition mechanism and stability of CO2 hydrate in porous media: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    20. Feng, Chao & Zhu, Rong & Wei, Guangsheng & Dong, Kai & Xia, Tao, 2023. "Typical case of CO2 capture in Chinese iron and steel enterprises: Exergy analysis," Applied Energy, Elsevier, vol. 336(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224035230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.