IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v326y2022ics0306261922011631.html
   My bibliography  Save this article

Hydrate based carbon capture and sequestration (HBCCS): An innovative approach towards decarbonization

Author

Listed:
  • Pandey, Gaurav
  • Poothia, Tejaswa
  • Kumar, Asheesh

Abstract

The surge in global greenhouse gas emissions (mainly CO2) has introduced the world to the significant problem of climate change. A paradigm shift towards sustainable energy sources is necessary to meet the sustainable development goals (SDGs). Applying carbon capture and sequestration (CCS) technologies could be a suitable approach for minimizing anthropogenic CO2. Implementation of CCS involves enormous capital expenditure along with transportation, sequestration, and purification cost making its adaptability economically unfeasible. A novel approach to hydrate-based CO2 capture and sequestration (HBCCS) has gathered significant attention due to its potential to provide long-term CO2 sequestration. Herein, the methane-carbon dioxide sweeping process (CH4-CO2 replacement) has gained considerable interest as it produces clean energy (natural gas) from natural gas hydrate deposits while sequestering anthropogenic CO2. In this review paper, we presented a thorough assessment of the HBCCS process while highlighting the critical factors along with the economic/environmental/technical barriers controlling its deployment in actual field applications.

Suggested Citation

  • Pandey, Gaurav & Poothia, Tejaswa & Kumar, Asheesh, 2022. "Hydrate based carbon capture and sequestration (HBCCS): An innovative approach towards decarbonization," Applied Energy, Elsevier, vol. 326(C).
  • Handle: RePEc:eee:appene:v:326:y:2022:i:c:s0306261922011631
    DOI: 10.1016/j.apenergy.2022.119900
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922011631
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119900?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ding, Ya-Long & Xu, Chun-Gang & Yu, Yi-Song & Li, Xiao-Sen, 2017. "Methane recovery from natural gas hydrate with simulated IGCC syngas," Energy, Elsevier, vol. 120(C), pages 192-198.
    2. Jiafei Zhao & Kun Xu & Yongchen Song & Weiguo Liu & Weihaur Lam & Yu Liu & Kaihua Xue & Yiming Zhu & Xichong Yu & Qingping Li, 2012. "A Review on Research on Replacement of CH 4 in Natural Gas Hydrates by Use of CO 2," Energies, MDPI, vol. 5(2), pages 1-21, February.
    3. Tobias Mattisson & Fredrik Hildor & Ye Li & Carl Linderholm, 2020. "Negative emissions of carbon dioxide through chemical-looping combustion (CLC) and gasification (CLG) using oxygen carriers based on manganese and iron," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(4), pages 497-517, April.
    4. Koh, Dong-Yeun & Kang, Hyery & Lee, Jong-Won & Park, Youngjune & Kim, Se-Joon & Lee, Jaehyoung & Lee, Joo Yong & Lee, Huen, 2016. "Energy-efficient natural gas hydrate production using gas exchange," Applied Energy, Elsevier, vol. 162(C), pages 114-130.
    5. Song, Chunfeng & Liu, Qingling & Deng, Shuai & Li, Hailong & Kitamura, Yutaka, 2019. "Cryogenic-based CO2 capture technologies: State-of-the-art developments and current challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 265-278.
    6. Wang, Xiao-Hui & Sun, Yi-Fei & Wang, Yun-Fei & Li, Nan & Sun, Chang-Yu & Chen, Guang-Jin & Liu, Bei & Yang, Lan-Ying, 2017. "Gas production from hydrates by CH4-CO2/H2 replacement," Applied Energy, Elsevier, vol. 188(C), pages 305-314.
    7. Yan, Cheng & Zheng, Zheng, 2014. "Performance of mixed LED light wavelengths on biogas upgrade and biogas fluid removal by microalga Chlorella sp," Applied Energy, Elsevier, vol. 113(C), pages 1008-1014.
    8. Yuan, Qing & Sun, Chang-Yu & Yang, Xin & Ma, Ping-Chuan & Ma, Zheng-Wei & Liu, Bei & Ma, Qing-Lan & Yang, Lan-Ying & Chen, Guang-Jin, 2012. "Recovery of methane from hydrate reservoir with gaseous carbon dioxide using a three-dimensional middle-size reactor," Energy, Elsevier, vol. 40(1), pages 47-58.
    9. Zhu, Liandong, 2015. "Biorefinery as a promising approach to promote microalgae industry: An innovative framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1376-1384.
    10. Babu, Ponnivalavan & Kumar, Rajnish & Linga, Praveen, 2013. "Pre-combustion capture of carbon dioxide in a fixed bed reactor using the clathrate hydrate process," Energy, Elsevier, vol. 50(C), pages 364-373.
    11. Ange‐Therese Akono & Jennifer L. Druhan & Gabriela Dávila & Theodore Tsotsis & Kristian Jessen & Samantha Fuchs & Dustin Crandall & Zhuofan Shi & Laura Dalton & Mary K. Tkach & Angela L. Goodman & Sco, 2019. "A review of geochemical–mechanical impacts in geological carbon storage reservoirs," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 9(3), pages 474-504, June.
    12. Christian Deusner & Nikolaus Bigalke & Elke Kossel & Matthias Haeckel, 2012. "Methane Production from Gas Hydrate Deposits through Injection of Supercritical CO 2," Energies, MDPI, vol. 5(7), pages 1-29, June.
    13. Wang, Xiaolin & Zhang, Fengyuan & Lipiński, Wojciech, 2020. "Research progress and challenges in hydrate-based carbon dioxide capture applications," Applied Energy, Elsevier, vol. 269(C).
    14. Salvatore F. Cannone & Andrea Lanzini & Massimo Santarelli, 2021. "A Review on CO 2 Capture Technologies with Focus on CO 2 -Enhanced Methane Recovery from Hydrates," Energies, MDPI, vol. 14(2), pages 1-32, January.
    15. Yan, Cheng & Zhu, Liandong & Wang, Yanxin, 2016. "Photosynthetic CO2 uptake by microalgae for biogas upgrading and simultaneously biogas slurry decontamination by using of microalgae photobioreactor under various light wavelengths, light intensities,," Applied Energy, Elsevier, vol. 178(C), pages 9-18.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Yu & Zhong, Honglin & Kong, Fanbin & Zhang, Ning, 2023. "Can China achieve carbon neutrality without power shortage? A substitutability perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    2. Adriana Veronica Litră & Eliza Nichifor & Ioana Bianca Chiţu & Alexandra Zamfirache & Gabriel Brătucu, 2023. "The Dilemma of the European Integration Principle—Ensuring Energy Independence of the European Union," Sustainability, MDPI, vol. 15(21), pages 1-19, November.
    3. Gourav Kumar Rath & Gaurav Pandey & Sakshi Singh & Nadezhda Molokitina & Asheesh Kumar & Sanket Joshi & Geetanjali Chauhan, 2023. "Carbon Dioxide Separation Technologies: Applicable to Net Zero," Energies, MDPI, vol. 16(10), pages 1-22, May.
    4. Ren, Junjie & Zeng, Siyu & Chen, Daoyi & Yang, Mingjun & Linga, Praveen & Yin, Zhenyuan, 2023. "Roles of montmorillonite clay on the kinetics and morphology of CO2 hydrate in hydrate-based CO2 sequestration1," Applied Energy, Elsevier, vol. 340(C).
    5. Sergey Misyura & Pavel Strizhak & Anton Meleshkin & Vladimir Morozov & Olga Gaidukova & Nikita Shlegel & Maria Shkola, 2023. "A Review of Gas Capture and Liquid Separation Technologies by CO 2 Gas Hydrate," Energies, MDPI, vol. 16(8), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xuyue & Yang, Jin & Gao, Deli & Hong, Yuqun & Zou, Yiqi & Du, Xu, 2020. "Unlocking the deepwater natural gas hydrate's commercial potential with extended reach wells from shallow water: Review and an innovative method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Tsypkin, G.G., 2021. "Analytical study of CO2–CH4 exchange in hydrate at high rates of carbon dioxide injection into a reservoir saturated with methane hydrate and gaseous methane," Energy, Elsevier, vol. 233(C).
    3. Nguyen, Ngoc N. & La, Vinh T. & Huynh, Chinh D. & Nguyen, Anh V., 2022. "Technical and economic perspectives of hydrate-based carbon dioxide capture," Applied Energy, Elsevier, vol. 307(C).
    4. Sun, You-Hong & Zhang, Guo-Biao & Carroll, John J. & Li, Sheng-Li & Jiang, Shu-Hui & Guo, Wei, 2018. "Experimental investigation into gas recovery from CH4-C2H6-C3H8 hydrates by CO2 replacement," Applied Energy, Elsevier, vol. 229(C), pages 625-636.
    5. Sergey Misyura & Pavel Strizhak & Anton Meleshkin & Vladimir Morozov & Olga Gaidukova & Nikita Shlegel & Maria Shkola, 2023. "A Review of Gas Capture and Liquid Separation Technologies by CO 2 Gas Hydrate," Energies, MDPI, vol. 16(8), pages 1-20, April.
    6. Wang, Xiao-Hui & Sun, Yi-Fei & Wang, Yun-Fei & Li, Nan & Sun, Chang-Yu & Chen, Guang-Jin & Liu, Bei & Yang, Lan-Ying, 2017. "Gas production from hydrates by CH4-CO2/H2 replacement," Applied Energy, Elsevier, vol. 188(C), pages 305-314.
    7. Le, Quang-Du & Rodriguez, Carla T. & Legoix, Ludovic N. & Pirim, Claire & Chazallon, Bertrand, 2020. "Influence of the initial CH4-hydrate system properties on CO2 capture kinetics," Applied Energy, Elsevier, vol. 280(C).
    8. Zhou, Xuebing & Li, Dongliang & Zhang, Shaohong & Liang, Deqing, 2017. "Swapping methane with carbon dioxide in spherical hydrate pellets," Energy, Elsevier, vol. 140(P1), pages 136-143.
    9. Sun, Yi-Fei & Zhong, Jin-Rong & Li, Rui & Zhu, Tao & Cao, Xin-Yi & Chen, Guang-Jin & Wang, Xiao-Hui & Yang, Lan-Ying & Sun, Chang-Yu, 2018. "Natural gas hydrate exploitation by CO2/H2 continuous Injection-Production mode," Applied Energy, Elsevier, vol. 226(C), pages 10-21.
    10. Wang, Xiaolin & Zhang, Fengyuan & Lipiński, Wojciech, 2020. "Research progress and challenges in hydrate-based carbon dioxide capture applications," Applied Energy, Elsevier, vol. 269(C).
    11. Khan, Muhammad Usman & Lee, Jonathan Tian En & Bashir, Muhammad Aamir & Dissanayake, Pavani Dulanja & Ok, Yong Sik & Tong, Yen Wah & Shariati, Mohammad Ali & Wu, Sarah & Ahring, Birgitte Kiaer, 2021. "Current status of biogas upgrading for direct biomethane use: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    12. Chong, Zheng Rong & Moh, Jia Wei Regine & Yin, Zhenyuan & Zhao, Jianzhong & Linga, Praveen, 2018. "Effect of vertical wellbore incorporation on energy recovery from aqueous rich hydrate sediments," Applied Energy, Elsevier, vol. 229(C), pages 637-647.
    13. Apoorva Upadhyay & Andrey A. Kovalev & Elena A. Zhuravleva & Dmitriy A. Kovalev & Yuriy V. Litti & Shyam Kumar Masakapalli & Nidhi Pareek & Vivekanand Vivekanand, 2022. "Recent Development in Physical, Chemical, Biological and Hybrid Biogas Upgradation Techniques," Sustainability, MDPI, vol. 15(1), pages 1-30, December.
    14. Ding, Ya-Long & Xu, Chun-Gang & Yu, Yi-Song & Li, Xiao-Sen, 2017. "Methane recovery from natural gas hydrate with simulated IGCC syngas," Energy, Elsevier, vol. 120(C), pages 192-198.
    15. Elke Kossel & Nikolaus K. Bigalke & Christian Deusner & Matthias Haeckel, 2021. "Microscale Processes and Dynamics during CH 4 –CO 2 Guest-Molecule Exchange in Gas Hydrates," Energies, MDPI, vol. 14(6), pages 1-31, March.
    16. Roostaie, M. & Leonenko, Y., 2020. "Gas production from methane hydrates upon thermal stimulation; an analytical study employing radial coordinates," Energy, Elsevier, vol. 194(C).
    17. Gambelli, Alberto Maria & Rossi, Federico, 2019. "Natural gas hydrates: Comparison between two different applications of thermal stimulation for performing CO2 replacement," Energy, Elsevier, vol. 172(C), pages 423-434.
    18. Bi, Yuehong & Chen, Jie & Miao, Zhen, 2016. "Thermodynamic optimization for dissociation process of gas hydrates," Energy, Elsevier, vol. 106(C), pages 270-276.
    19. Chen, Bingbing & Sun, Huiru & Zhou, Hang & Yang, Mingjun & Wang, Dayong, 2019. "Effects of pressure and sea water flow on natural gas hydrate production characteristics in marine sediment," Applied Energy, Elsevier, vol. 238(C), pages 274-283.
    20. Yang, She Hern Bryan & Babu, Ponnivalavan & Chua, Sam Fu Sheng & Linga, Praveen, 2016. "Carbon dioxide hydrate kinetics in porous media with and without salts," Applied Energy, Elsevier, vol. 162(C), pages 1131-1140.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:326:y:2022:i:c:s0306261922011631. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.