IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i15p3702-d1443958.html
   My bibliography  Save this article

Unraveling the Role of Amino Acid L -Tryptophan Concentration in Enhancing CO 2 Hydrate Kinetics

Author

Listed:
  • Yan Li

    (Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China)

  • Alberto Maria Gambelli

    (Civil and Environmental Engineering Department, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy)

  • Yizhi Rao

    (Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China)

  • Xuejian Liu

    (Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China)

  • Zhenyuan Yin

    (Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China)

  • Federico Rossi

    (Engineering Department, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy)

Abstract

Carbon dioxide (CO 2 ) hydrates have garnered significant interest as a promising technology for CO 2 capture and storage due to its high storage capacity and moderate operating conditions. The kinetics of CO 2 hydrate formation is a critical factor in determining the feasibility of hydrate-based CO 2 capture and storage technologies. This study systematically investigates the promotional effects of the amino acid L -tryptophan ( L -trp) on CO 2 hydrate formation kinetics and morphology under stirred and unstirred conditions. In the stirred system, experiments were conducted in a high-pressure 100 mL reactor with 0.05, 0.10, and 0.30 wt% L -trp solution. CO 2 gas uptake kinetics and morphological evolution were monitored using a high-resolution digital camera. Results showed that L -trp promoted CO 2 hydrate formation kinetics without delay, with rapid CO 2 consumption upon nucleation. Morphological evolution revealed rapid hydrate formation, wall-climbing growth, and dendritic morphology filling the bulk solution. Under unstirred conditions, experiments were performed in a larger 1 L reactor with 0.1 wt% and 0.5 wt% L -trp solutions to assess the influence of additive concentration on hydrate formation thermodynamics and kinetics. Results demonstrated that L -trp influenced both thermodynamics and kinetics of CO 2 hydrate formation. Thermodynamically, 0.1 wt% L -trp resulted in the highest hydrate formation, indicating an optimal concentration for thermodynamic promotion. Kinetically, increasing L -trp concentration from 0.1 wt% to 0.5 wt% reduced formation time, demonstrating a proportional relationship between L -trp concentration and formation kinetics. These findings provide insights into the role of L -trp in promoting CO 2 hydrate formation and the interplay between additive concentration, thermodynamics, and kinetics. The results can inform the development of effective hydrate-based technologies for CO 2 sequestration, highlighting the potential of amino acids as promoters in gas hydrate.

Suggested Citation

  • Yan Li & Alberto Maria Gambelli & Yizhi Rao & Xuejian Liu & Zhenyuan Yin & Federico Rossi, 2024. "Unraveling the Role of Amino Acid L -Tryptophan Concentration in Enhancing CO 2 Hydrate Kinetics," Energies, MDPI, vol. 17(15), pages 1-15, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3702-:d:1443958
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/15/3702/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/15/3702/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Federico Rossi & Yan Li & Alberto Maria Gambelli, 2021. "Thermodynamic and Kinetic Description of the Main Effects Related to the Memory Effect during Carbon Dioxide Hydrates Formation in a Confined Environment," Sustainability, MDPI, vol. 13(24), pages 1-21, December.
    2. E. Dendy Sloan, 2003. "Fundamental principles and applications of natural gas hydrates," Nature, Nature, vol. 426(6964), pages 353-359, November.
    3. Pandey, Gaurav & Poothia, Tejaswa & Kumar, Asheesh, 2022. "Hydrate based carbon capture and sequestration (HBCCS): An innovative approach towards decarbonization," Applied Energy, Elsevier, vol. 326(C).
    4. Liu, Fa-Ping & Li, Ai-Rong & Qing, Sheng-Lan & Luo, Ze-Dong & Ma, Yu-Ling, 2022. "Formation kinetics, mechanism of CO2 hydrate and its applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    5. Pagar, Eti & Burla, Sai Kiran & Kumar, Vimal & Veluswamy, Hari Prakash, 2024. "Influence of amino acids on gas hydrate formation and dissociation kinetics using flue gas (CO2 + N2 mixture) in silica sand under saline/non-saline conditions for CO2 sequestration," Applied Energy, Elsevier, vol. 367(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sergey Misyura & Pavel Strizhak & Anton Meleshkin & Vladimir Morozov & Olga Gaidukova & Nikita Shlegel & Maria Shkola, 2023. "A Review of Gas Capture and Liquid Separation Technologies by CO 2 Gas Hydrate," Energies, MDPI, vol. 16(8), pages 1-20, April.
    2. Zhou, Shi-Dong & Xiao, Yan-Yun & Ni, Xing-Ya & Li, Xiao-Yan & Wu, Zhi-Min & Liu, Yang & Lv, Xiao-Fang, 2024. "Kinetics studies of CO2 hydrate formation in the presence of l-methionine coupled with multi-walled carbon nanotubes," Energy, Elsevier, vol. 298(C).
    3. Deng, Zhixia & Fan, Shuanshi & Wang, Yanhong & Lang, Xuemei & Li, Gang & Liu, Faping & Li, Mengyang, 2023. "High storage capacity and high formation rate of carbon dioxide hydrates via super-hydrophobic fluorinated graphenes," Energy, Elsevier, vol. 264(C).
    4. Alberto Maria Gambelli & Federico Rossi & Giovanni Gigliotti, 2025. "Usage of a Binary CO 2 /C 3 H 8 (85/15 vol%) Mixture for Hydrate Production: The Role of the Memory Effect and Phase Boundary Conditions of the System," Energies, MDPI, vol. 18(6), pages 1-20, March.
    5. Xie, Yan & Zheng, Tao & Zhu, Yujie & Sun, Changyu & Chen, Guangjin & Feng, Jingchun, 2024. "H2 promotes the premature replacement of CH4–CO2 hydrate even when the CH4 gas-phase pressure exceeds the phase equilibrium pressure of CH4 hydrate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    6. Zhang, Zhengcai & Kusalik, Peter G. & Liu, Changling & Wu, Nengyou, 2023. "Methane hydrate formation in slit-shaped pores: Impacts of surface hydrophilicity," Energy, Elsevier, vol. 285(C).
    7. Zeng, Siyu & Yin, Zhenyuan & Ren, Junjie & Bhawangirkar, Dnyaneshwar R. & Huang, Li & Linga, Praveen, 2024. "Effect of MgCl2 on CO2 sequestration as hydrates in marine environment: A thermodynamic and kinetic investigation with morphology insights," Energy, Elsevier, vol. 286(C).
    8. Kasala, Erasto E. & Wang, Jinjie & Hussain, Wakeel & Majid, Asia & Nyakilla, Edwin E., 2025. "Enhancing CO2 hydrate formation and long-term stability in subseafloor saline sediments through integrated thermal and pressure management for effective CO2 sequestration," Applied Energy, Elsevier, vol. 377(PD).
    9. Tian Wang & Aliakbar Hassanpouryouzband & Mengge Fan & Chalachew Mebrahtu & Lunxiang Zhang & Yongchen Song, 2025. "Organic magnetic nanoparticles catalyze CO2 capture in hydrogen-bonded nanocages via water-driven crystallization," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    10. Chen, Siyuan & Wang, Yanhong & Lang, Xuemei & Fan, Shuanshi & Li, Gang, 2023. "Rapid and high hydrogen storage in epoxycyclopentane hydrate at moderate pressure," Energy, Elsevier, vol. 268(C).
    11. Xu, Chun-Gang & Cai, Jing & Yu, Yi-Song & Yan, Ke-Feng & Li, Xiao-Sen, 2018. "Effect of pressure on methane recovery from natural gas hydrates by methane-carbon dioxide replacement," Applied Energy, Elsevier, vol. 217(C), pages 527-536.
    12. Choi, Wonjung & Lee, Yohan & Mok, Junghoon & Seo, Yongwon, 2020. "Influence of feed gas composition on structural transformation and guest exchange behaviors in sH hydrate – Flue gas replacement for energy recovery and CO2 sequestration," Energy, Elsevier, vol. 207(C).
    13. Luís Bernardes & Júlio Carneiro & Pedro Madureira & Filipe Brandão & Cristina Roque, 2015. "Determination of Priority Study Areas for Coupling CO2 Storage and CH 4 Gas Hydrates Recovery in the Portuguese Offshore Area," Energies, MDPI, vol. 8(9), pages 1-17, September.
    14. Nicola Varini & Niall J. English & Christian R. Trott, 2012. "Molecular Dynamics Simulations of Clathrate Hydrates on Specialised Hardware Platforms," Energies, MDPI, vol. 5(9), pages 1-8, September.
    15. Cheng, Fanbao & Sun, Xiang & Li, Yanghui & Ju, Xin & Yang, Yaobin & Liu, Xuanji & Liu, Weiguo & Yang, Mingjun & Song, Yongchen, 2023. "Numerical analysis of coupled thermal-hydro-chemo-mechanical (THCM) behavior to joint production of marine gas hydrate and shallow gas," Energy, Elsevier, vol. 281(C).
    16. Zhang, Xuemin & Zhang, Shanling & Liu, Qingqing & Huang, Tingting & Yang, Huijie & Li, Jinping & Wang, Yingmei & Wu, Qingbai & Chen, Chen, 2024. "Experimental study of gas recovery behaviors from methane hydrate-bearing sediments by CO2 replacement below freezing point," Energy, Elsevier, vol. 288(C).
    17. Zhong, Jin-Rong & Sun, Yi-Fei & Li, Wen-Zhi & Xie, Yan & Chen, Guang-Jin & Sun, Chang-Yu & Yang, Lan-Ying & Qin, Hui-Bo & Pang, Wei-Xin & Li, Qing-Ping, 2019. "Structural transition range of methane-ethane gas hydrates during decomposition below ice point," Applied Energy, Elsevier, vol. 250(C), pages 873-881.
    18. Han Xue & Linhai Li & Yiqun Wang & Youhua Lu & Kai Cui & Zhiyuan He & Guoying Bai & Jie Liu & Xin Zhou & Jianjun Wang, 2024. "Probing the critical nucleus size in tetrahydrofuran clathrate hydrate formation using surface-anchored nanoparticles," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. Tang, Jiadi & Lei, Gang & Wu, Qi & Zhang, Ling & Ning, Fulong, 2024. "An improved analytical model of effective thermal conductivity for hydrate-bearing sediments during elastic-plastic deformation and local thermal stimulation," Energy, Elsevier, vol. 305(C).
    20. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu & Li, Gang, 2016. "Large scale experimental evaluation to methane hydrate dissociation below quadruple point in sandy sediment," Applied Energy, Elsevier, vol. 162(C), pages 372-381.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3702-:d:1443958. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.