IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i8p3318-d1118664.html
   My bibliography  Save this article

A Review of Gas Capture and Liquid Separation Technologies by CO 2 Gas Hydrate

Author

Listed:
  • Sergey Misyura

    (Kutateladze Institute of Thermophysics, 630090 Novosibirsk, Russia)

  • Pavel Strizhak

    (Heat and Mass Transfer Laboratory, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia)

  • Anton Meleshkin

    (Kutateladze Institute of Thermophysics, 630090 Novosibirsk, Russia)

  • Vladimir Morozov

    (Kutateladze Institute of Thermophysics, 630090 Novosibirsk, Russia)

  • Olga Gaidukova

    (Heat and Mass Transfer Laboratory, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia)

  • Nikita Shlegel

    (Heat and Mass Transfer Laboratory, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia)

  • Maria Shkola

    (Heat and Mass Transfer Laboratory, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia)

Abstract

Gas hydrates, being promising energy sources, also have good prospects for application in gas separation and capture technologies (e.g., CO 2 sequestration), as well as for seawater desalination. However, the widespread use of these technologies is hindered due to their high cost associated with high power consumption and the low growth rates of gas hydrates. Previous studies do not comprehensively disclose the combined effect of several surfactants. In addition, issues related to the kinetics of CO 2 hydrate dissociation in the annealing temperature range remain poorly investigated. The presented review suggests promising ways to improve efficiency of gas capture and liquid separation technologies. Various methods of heat and mass transfer enhancement and the use of surfactants allow the growth rate to be significantly increased and the degree of water transformation into gas hydrate, which gives impetus to further advancement of these technologies. Taking the kinetics of this into account is important for improving the efficiency of gas hydrate storage and transportation technologies, as well as for enhancing models of global climate warming considering the increase in temperatures in the permafrost region.

Suggested Citation

  • Sergey Misyura & Pavel Strizhak & Anton Meleshkin & Vladimir Morozov & Olga Gaidukova & Nikita Shlegel & Maria Shkola, 2023. "A Review of Gas Capture and Liquid Separation Technologies by CO 2 Gas Hydrate," Energies, MDPI, vol. 16(8), pages 1-20, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3318-:d:1118664
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/8/3318/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/8/3318/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xie, Yan & Zhu, Yu-Jie & Cheng, Li-Wei & Zheng, Tao & Zhong, Jin-Rong & Xiao, Peng & Sun, Chang-Yu & Chen, Guang-Jin & Feng, Jing-Chun, 2023. "The coexistence of multiple hydrates triggered by varied H2 molecule occupancy during CO2/H2 hydrate dissociation," Energy, Elsevier, vol. 262(PA).
    2. Hailong Lu & Yu-taek Seo & Jong-won Lee & Igor Moudrakovski & John A. Ripmeester & N. Ross Chapman & Richard B. Coffin & Graeme Gardner & John Pohlman, 2007. "Complex gas hydrate from the Cascadia margin," Nature, Nature, vol. 445(7125), pages 303-306, January.
    3. Olga Gaidukova & Sergey Misyura & Vladimir Morozov & Pavel Strizhak, 2023. "Gas Hydrates: Applications and Advantages," Energies, MDPI, vol. 16(6), pages 1-19, March.
    4. Xu, Chun-Gang & Cai, Jing & Lin, Fu-hua & Chen, Zhao-Yang & Li, Xiao-Sen, 2015. "Raman analysis on methane production from natural gas hydrate by carbon dioxide–methane replacement," Energy, Elsevier, vol. 79(C), pages 111-116.
    5. Yu, Yi-Song & Zhang, Qing-Zong & Li, Xiao-Sen & Chen, Chang & Zhou, Shi-Dong, 2020. "Kinetics, compositions and structures of carbon dioxide/hydrogen hydrate formation in the presence of cyclopentane," Applied Energy, Elsevier, vol. 265(C).
    6. Choi, Wonjung & Mok, Junghoon & Lee, Jonghyuk & Lee, Yohan & Lee, Jaehyoung & Sum, Amadeu K. & Seo, Yongwon, 2022. "Effective CH4 production and novel CO2 storage through depressurization-assisted replacement in natural gas hydrate-bearing sediment," Applied Energy, Elsevier, vol. 326(C).
    7. Yang, Mingjun & Song, Yongchen & Jiang, Lanlan & Liu, Weiguo & Dou, Binlin & Jing, Wen, 2014. "Effects of operating mode and pressure on hydrate-based desalination and CO2 capture in porous media," Applied Energy, Elsevier, vol. 135(C), pages 504-511.
    8. He, Tianbiao & Chong, Zheng Rong & Zheng, Junjie & Ju, Yonglin & Linga, Praveen, 2019. "LNG cold energy utilization: Prospects and challenges," Energy, Elsevier, vol. 170(C), pages 557-568.
    9. Li, Bo & Liu, Sheng-Dong & Liang, Yun-Pei & Liu, Hang, 2018. "The use of electrical heating for the enhancement of gas recovery from methane hydrate in porous media," Applied Energy, Elsevier, vol. 227(C), pages 694-702.
    10. Pandey, Gaurav & Poothia, Tejaswa & Kumar, Asheesh, 2022. "Hydrate based carbon capture and sequestration (HBCCS): An innovative approach towards decarbonization," Applied Energy, Elsevier, vol. 326(C).
    11. Jianchun Xu & Ziwei Bu & Hangyu Li & Xiaopu Wang & Shuyang Liu, 2022. "Permeability Models of Hydrate-Bearing Sediments: A Comprehensive Review with Focus on Normalized Permeability," Energies, MDPI, vol. 15(13), pages 1-65, June.
    12. Deng, Zhixia & Fan, Shuanshi & Wang, Yanhong & Lang, Xuemei & Li, Gang & Liu, Faping & Li, Mengyang, 2023. "High storage capacity and high formation rate of carbon dioxide hydrates via super-hydrophobic fluorinated graphenes," Energy, Elsevier, vol. 264(C).
    13. Sun, Yi-Fei & Zhong, Jin-Rong & Li, Rui & Zhu, Tao & Cao, Xin-Yi & Chen, Guang-Jin & Wang, Xiao-Hui & Yang, Lan-Ying & Sun, Chang-Yu, 2018. "Natural gas hydrate exploitation by CO2/H2 continuous Injection-Production mode," Applied Energy, Elsevier, vol. 226(C), pages 10-21.
    14. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhan, Lei & Li, Xiao-Yan, 2018. "Pilot-scale experimental evaluation of gas recovery from methane hydrate using cycling-depressurization scheme," Energy, Elsevier, vol. 160(C), pages 835-844.
    15. Li, Xiao-Sen & Xu, Chun-Gang & Chen, Zhao-Yang & Wu, Hui-Jie, 2010. "Tetra-n-butyl ammonium bromide semi-clathrate hydrate process for post-combustion capture of carbon dioxide in the presence of dodecyl trimethyl ammonium chloride," Energy, Elsevier, vol. 35(9), pages 3902-3908.
    16. Koh, Dong-Yeun & Kang, Hyery & Lee, Jong-Won & Park, Youngjune & Kim, Se-Joon & Lee, Jaehyoung & Lee, Joo Yong & Lee, Huen, 2016. "Energy-efficient natural gas hydrate production using gas exchange," Applied Energy, Elsevier, vol. 162(C), pages 114-130.
    17. Wang, Xiaolin & Zhang, Fengyuan & Lipiński, Wojciech, 2020. "Research progress and challenges in hydrate-based carbon dioxide capture applications," Applied Energy, Elsevier, vol. 269(C).
    18. Misyura, S.Y., 2020. "Dissociation of various gas hydrates (methane hydrate, double gas hydrates of methane-propane and methane-isopropanol) during combustion: Assessing the combustion efficiency," Energy, Elsevier, vol. 206(C).
    19. Wu, Yongji & He, Yurong & Tang, Tianqi & Zhai, Ming, 2023. "Molecular dynamic simulations of methane hydrate formation between solid surfaces: Implications for methane storage," Energy, Elsevier, vol. 262(PB).
    20. Babu, Ponnivalavan & Datta, Stuti & Kumar, Rajnish & Linga, Praveen, 2014. "Impact of experimental pressure and temperature on semiclathrate hydrate formation for pre-combustion capture of CO2 using tetra-n-butyl ammonium nitrate," Energy, Elsevier, vol. 78(C), pages 458-464.
    21. Yang, Mingjun & Zheng, Jianan & Liu, Weiguo & Liu, Yu & Song, Yongchen, 2015. "Effects of C3H8 on hydrate formation and dissociation for integrated CO2 capture and desalination technology," Energy, Elsevier, vol. 93(P2), pages 1971-1979.
    22. Wenjiu Cai & Xin Huang & Hailong Lu, 2022. "Instrumental Methods for Cage Occupancy Estimation of Gas Hydrate," Energies, MDPI, vol. 15(2), pages 1-24, January.
    23. Yan, Chuanliang & Li, Yang & Cheng, Yuanfang & Wei, Jia & Tian, Wanqing & Li, Shuxia & Wang, Zhiyuan, 2022. "Multifield coupling mechanism in formations around a wellbore during the exploitation of methane hydrate with CO2 replacement," Energy, Elsevier, vol. 245(C).
    24. Wang, Xiao-Hui & Sun, Yi-Fei & Wang, Yun-Fei & Li, Nan & Sun, Chang-Yu & Chen, Guang-Jin & Liu, Bei & Yang, Lan-Ying, 2017. "Gas production from hydrates by CH4-CO2/H2 replacement," Applied Energy, Elsevier, vol. 188(C), pages 305-314.
    25. Jianye Sun & Xiluo Hao & Chengfeng Li & Nengyou Wu & Qiang Chen & Changling Liu & Yanlong Li & Qingguo Meng & Li Huang & Qingtao Bu, 2022. "Experimental Study on the Distribution Characteristics of CO 2 in Methane Hydrate-Bearing Sediment during CH 4 /CO 2 Replacement," Energies, MDPI, vol. 15(15), pages 1-14, August.
    26. E. Dendy Sloan, 2003. "Fundamental principles and applications of natural gas hydrates," Nature, Nature, vol. 426(6964), pages 353-359, November.
    27. Lee, Yohan & Kim, Yunju & Lee, Jaehyoung & Lee, Huen & Seo, Yongwon, 2015. "CH4 recovery and CO2 sequestration using flue gas in natural gas hydrates as revealed by a micro-differential scanning calorimeter," Applied Energy, Elsevier, vol. 150(C), pages 120-127.
    28. Qingping Li & Shuxia Li & Shuyue Ding & Zhenyuan Yin & Lu Liu & Shuaijun Li, 2022. "Numerical Simulation of Gas Production and Reservoir Stability during CO 2 Exchange in Natural Gas Hydrate Reservoir," Energies, MDPI, vol. 15(23), pages 1-17, November.
    29. Olga Gaidukova & Sergei Misyura & Pavel Strizhak, 2022. "Key Areas of Gas Hydrates Study: Review," Energies, MDPI, vol. 15(5), pages 1-18, February.
    30. Steven Constable & Laura A. Stern, 2022. "Monitoring Offshore CO 2 Sequestration Using Marine CSEM Methods; Constraints Inferred from Field- and Laboratory-Based Gas Hydrate Studies," Energies, MDPI, vol. 15(19), pages 1-16, October.
    31. Zhang, Xuemin & Yang, Huijie & Huang, Tingting & Li, Jinping & Li, Pengyu & Wu, Qingbai & Wang, Yingmei & Zhang, Peng, 2022. "Research progress of molecular dynamics simulation on the formation-decomposition mechanism and stability of CO2 hydrate in porous media: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    32. Marat K. Khasanov & Guzal R. Rafikova & Nail G. Musakaev, 2020. "Mathematical Model of Carbon Dioxide Injection into a Porous Reservoir Saturated with Methane and Its Gas Hydrate," Energies, MDPI, vol. 13(2), pages 1-17, January.
    33. Bian, Jiang & Wang, Hongchao & Yang, Kairan & Chen, Junwen & Cao, Xuewen, 2022. "Spatial differences in pressure and heat transfer characteristics of CO2 hydrate with dissociation for geological CO2 storage," Energy, Elsevier, vol. 240(C).
    34. Chong, Zheng Rong & Yang, She Hern Bryan & Babu, Ponnivalavan & Linga, Praveen & Li, Xiao-Sen, 2016. "Review of natural gas hydrates as an energy resource: Prospects and challenges," Applied Energy, Elsevier, vol. 162(C), pages 1633-1652.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olga Gaidukova & Sergey Misyura & Vladimir Morozov & Pavel Strizhak, 2023. "Gas Hydrates: Applications and Advantages," Energies, MDPI, vol. 16(6), pages 1-19, March.
    2. Wang, Xiaolin & Zhang, Fengyuan & Lipiński, Wojciech, 2020. "Research progress and challenges in hydrate-based carbon dioxide capture applications," Applied Energy, Elsevier, vol. 269(C).
    3. Chen, Xuejun & Lu, Hailong & Gu, Lijuan & Shang, Shilong & Zhang, Yi & Huang, Xin & Zhang, Le, 2022. "Preliminary evaluation of the economic potential of the technologies for gas hydrate exploitation," Energy, Elsevier, vol. 243(C).
    4. Sun, Yi-Fei & Wang, Yun-Fei & Zhong, Jin-Rong & Li, Wen-Zhi & Li, Rui & Cao, Bo-Jian & Kan, Jing-Yu & Sun, Chang-Yu & Chen, Guang-Jin, 2019. "Gas hydrate exploitation using CO2/H2 mixture gas by semi-continuous injection-production mode," Applied Energy, Elsevier, vol. 240(C), pages 215-225.
    5. Thakre, Niraj & Jana, Amiya K., 2017. "Modeling phase equilibrium with a modified Wong-Sandler mixing rule for natural gas hydrates: Experimental validation," Applied Energy, Elsevier, vol. 205(C), pages 749-760.
    6. Sun, You-Hong & Zhang, Guo-Biao & Carroll, John J. & Li, Sheng-Li & Jiang, Shu-Hui & Guo, Wei, 2018. "Experimental investigation into gas recovery from CH4-C2H6-C3H8 hydrates by CO2 replacement," Applied Energy, Elsevier, vol. 229(C), pages 625-636.
    7. Sun, Yi-Fei & Zhong, Jin-Rong & Chen, Guang-Jin & Cao, Bo-Jian & Li, Rui & Chen, Dao-Yi, 2021. "A new approach to efficient and safe gas production from unsealed marine hydrate deposits," Applied Energy, Elsevier, vol. 282(PB).
    8. Lee, Joonseop & Lee, Dongyoung & Seo, Yongwon, 2021. "Experimental investigation of the exact role of large-molecule guest substances (LMGSs) in determining phase equilibria and structures of natural gas hydrates," Energy, Elsevier, vol. 215(PB).
    9. Lee, Yohan & Choi, Wonjung & Seo, Young-ju & Lee, Joo Yong & Lee, Jaehyoung & Seo, Yongwon, 2018. "Structural transition induced by cage-dependent guest exchange in CH4 + C3H8 hydrates with CO2 injection for energy recovery and CO2 sequestration," Applied Energy, Elsevier, vol. 228(C), pages 229-239.
    10. Zheng, Junjie & Zhang, Peng & Linga, Praveen, 2017. "Semiclathrate hydrate process for pre-combustion capture of CO2 at near ambient temperatures," Applied Energy, Elsevier, vol. 194(C), pages 267-278.
    11. Sun, Yi-Fei & Zhong, Jin-Rong & Li, Rui & Zhu, Tao & Cao, Xin-Yi & Chen, Guang-Jin & Wang, Xiao-Hui & Yang, Lan-Ying & Sun, Chang-Yu, 2018. "Natural gas hydrate exploitation by CO2/H2 continuous Injection-Production mode," Applied Energy, Elsevier, vol. 226(C), pages 10-21.
    12. Yang, Mingjun & Chong, Zheng Rong & Zheng, Jianan & Song, Yongchen & Linga, Praveen, 2017. "Advances in nuclear magnetic resonance (NMR) techniques for the investigation of clathrate hydrates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1346-1360.
    13. Xu, Chun-Gang & Cai, Jing & Yu, Yi-Song & Yan, Ke-Feng & Li, Xiao-Sen, 2018. "Effect of pressure on methane recovery from natural gas hydrates by methane-carbon dioxide replacement," Applied Energy, Elsevier, vol. 217(C), pages 527-536.
    14. Cheng, Zucheng & Li, Shaohua & Liu, Yu & Zhang, Yi & Ling, Zheng & Yang, Mingjun & Jiang, Lanlan & Song, Yongchen, 2022. "Post-combustion CO2 capture and separation in flue gas based on hydrate technology:A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    15. Ren, Liang-Liang & Qi, Ya-Hui & Chen, Jun-Li & Sun, Yi-Fei & Sun, Chang-Yu & Wang, Xiao-Hui & Chen, Guang-Jin & Yuan, Qing & Pang, Wei-Xin & Li, Qing-Ping, 2020. "Dependence of acoustic properties on hydrate-bearing sediments with heterogeneous distribution," Applied Energy, Elsevier, vol. 275(C).
    16. Mok, Junghoon & Choi, Wonjung & Lee, Jonghyuk & Seo, Yongwon, 2022. "Effects of pressure and temperature conditions on thermodynamic and kinetic guest exchange behaviors of CH4 − CO2 + N2 replacement for energy recovery and greenhouse gas storage," Energy, Elsevier, vol. 239(PB).
    17. Zhu, Yi-Jian & Chu, Yan-Song & Huang, Xing & Wang, Ling-Ban & Wang, Xiao-Hui & Xiao, Peng & Sun, Yi-Fei & Pang, Wei-Xin & Li, Qing-Ping & Sun, Chang-Yu & Chen, Guang-Jin, 2023. "Stability of hydrate-bearing sediment during methane hydrate production by depressurization or intermittent CO2/N2 injection," Energy, Elsevier, vol. 269(C).
    18. Liu, Fa-Ping & Li, Ai-Rong & Qing, Sheng-Lan & Luo, Ze-Dong & Ma, Yu-Ling, 2022. "Formation kinetics, mechanism of CO2 hydrate and its applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    19. Feng, Yongchang & Chen, Lin & Kanda, Yuki & Suzuki, Anna & Komiya, Atsuki & Maruyama, Shigenao, 2021. "Numerical analysis of gas production from large-scale methane hydrate sediments with fractures," Energy, Elsevier, vol. 236(C).
    20. Wang, Yiwei & Deng, Ye & Guo, Xuqiang & Sun, Qiang & Liu, Aixian & Zhang, Guangqing & Yue, Gang & Yang, Lanying, 2018. "Experimental and modeling investigation on separation of methane from coal seam gas (CSG) using hydrate formation," Energy, Elsevier, vol. 150(C), pages 377-395.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3318-:d:1118664. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.