IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i2p440-d309501.html
   My bibliography  Save this article

Mathematical Model of Carbon Dioxide Injection into a Porous Reservoir Saturated with Methane and Its Gas Hydrate

Author

Listed:
  • Marat K. Khasanov

    (Department of Applied Informatics and Programming, Sterlitamak Branch of Bashkir State University, 453100 Sterlitamak, Russia)

  • Guzal R. Rafikova

    (Department of Applied Informatics and Programming, Sterlitamak Branch of Bashkir State University, 453100 Sterlitamak, Russia
    Mavlutov Institute of Mechanics of UFRC RAS, 450054 Ufa, Russia)

  • Nail G. Musakaev

    (Department of Applied Informatics and Programming, Sterlitamak Branch of Bashkir State University, 453100 Sterlitamak, Russia
    Tyumen Branch of Khristianovich Institute of Theoretical and Applied Mechanics SB RAS, 625026 Tyumen, Russia
    Department of Development and Exploitation of Oil and Gas Fields, Industrial University of Tyumen, 625000 Tyumen, Russia)

Abstract

In this paper, the process of methane replacement in gas hydrate with carbon dioxide during CO 2 injection into a porous medium is studied. A model that takes into account both the heat and mass transfer in a porous medium and the diffusion kinetics of the replacement process is constructed. The influences of the diffusion coefficient, the permeability and extent of a reservoir on the time of full gas replacement in the hydrate are analyzed. It was established that at high values of the diffusion coefficient in hydrate, low values of the reservoir permeability, and with the growth of the reservoir length, the process of the CH 4 -CO 2 replacement in CH 4 hydrate will take place in the frontal regime and be limited, generally, by the filtration mass transfer. Otherwise, the replacement will limited by the diffusion of gas in the hydrate.

Suggested Citation

  • Marat K. Khasanov & Guzal R. Rafikova & Nail G. Musakaev, 2020. "Mathematical Model of Carbon Dioxide Injection into a Porous Reservoir Saturated with Methane and Its Gas Hydrate," Energies, MDPI, vol. 13(2), pages 1-17, January.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:2:p:440-:d:309501
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/2/440/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/2/440/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christian Deusner & Nikolaus Bigalke & Elke Kossel & Matthias Haeckel, 2012. "Methane Production from Gas Hydrate Deposits through Injection of Supercritical CO 2," Energies, MDPI, vol. 5(7), pages 1-29, June.
    2. Kristine Horvat & Prasad Kerkar & Keith Jones & Devinder Mahajan, 2012. "Kinetics of the Formation and Dissociation of Gas Hydrates from CO 2 -CH 4 Mixtures," Energies, MDPI, vol. 5(7), pages 1-15, July.
    3. Yi Wang & Lei Zhan & Jing-Chun Feng & Xiao-Sen Li, 2019. "Influence of the Particle Size of Sandy Sediments on Heat and Mass Transfer Characteristics during Methane Hydrate Dissociation by Thermal Stimulation," Energies, MDPI, vol. 12(22), pages 1-15, November.
    4. Polterovich, Victor & Popov, Vladimir, 2006. "Эволюционная Теория Экономической Политики: Часть I: Опыт Быстрого Развития [An Evolutionary Theory of Economic Policy: Part I: The Experience of Fast Development]," MPRA Paper 22168, University Library of Munich, Germany.
    5. Jyoti Shanker Pandey & Nicolas von Solms, 2019. "Hydrate Stability and Methane Recovery from Gas Hydrate through CH 4 –CO 2 Replacement in Different Mass Transfer Scenarios," Energies, MDPI, vol. 12(12), pages 1-20, June.
    6. Beatrice Castellani & Alberto Maria Gambelli & Andrea Nicolini & Federico Rossi, 2019. "Energy and Environmental Analysis of Membrane-Based CH 4 -CO 2 Replacement Processes in Natural Gas Hydrates," Energies, MDPI, vol. 12(5), pages 1-17, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stanislav L. Borodin & Nail G. Musakaev & Denis S. Belskikh, 2022. "Mathematical Modeling of a Non-Isothermal Flow in a Porous Medium Considering Gas Hydrate Decomposition: A Review," Mathematics, MDPI, vol. 10(24), pages 1-17, December.
    2. Sergey Y. Misyura & Igor G. Donskoy, 2021. "Dissociation and Combustion of a Layer of Methane Hydrate Powder: Ways to Increase the Efficiency of Combustion and Degassing," Energies, MDPI, vol. 14(16), pages 1-16, August.
    3. Marat K. Khasanov & Svetlana R. Kildibaeva & Maxim V. Stolpovsky & Nail G. Musakaev, 2022. "Mathematical Model of the Process of Non-Equilibrium Hydrate Formation in a Porous Reservoir during Gas Injection," Mathematics, MDPI, vol. 10(21), pages 1-14, November.
    4. Sergey Misyura & Pavel Strizhak & Anton Meleshkin & Vladimir Morozov & Olga Gaidukova & Nikita Shlegel & Maria Shkola, 2023. "A Review of Gas Capture and Liquid Separation Technologies by CO 2 Gas Hydrate," Energies, MDPI, vol. 16(8), pages 1-20, April.
    5. Amir A. Gubaidullin & Olga Yu. Boldyreva & Dina N. Dudko, 2023. "Approach to the Numerical Study of Wave Processes in a Layered and Fractured Porous Media in a Two-Dimensional Formulation," Mathematics, MDPI, vol. 11(1), pages 1-13, January.
    6. Olga Gaidukova & Sergei Misyura & Pavel Strizhak, 2022. "Key Areas of Gas Hydrates Study: Review," Energies, MDPI, vol. 15(5), pages 1-18, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Kai & Lau, Hon Chung, 2022. "Sequestering CO2 as CO2 hydrate in an offshore saline aquifer by reservoir pressure management," Energy, Elsevier, vol. 239(PC).
    2. Liu, Fa-Ping & Li, Ai-Rong & Qing, Sheng-Lan & Luo, Ze-Dong & Ma, Yu-Ling, 2022. "Formation kinetics, mechanism of CO2 hydrate and its applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. Kritana Prueksakorn & Cheng-Xu Piao & Hyunchul Ha & Taehyeung Kim, 2015. "Computational and Experimental Investigation for an Optimal Design of Industrial Windows to Allow Natural Ventilation during Wind-Driven Rain," Sustainability, MDPI, vol. 7(8), pages 1-22, August.
    4. Yirigui Yirigui & Sang-Woo Lee & A. Pouyan Nejadhashemi & Matthew R. Herman & Jong-Won Lee, 2019. "Relationships between Riparian Forest Fragmentation and Biological Indicators of Streams," Sustainability, MDPI, vol. 11(10), pages 1-24, May.
    5. Vladimir Popov, 2009. "Why the West Became Rich before China and Why China Has Been Catching Up with the West since 1949: nother Explanation of the “Great Divergence” and “Great Convergence” Stories," Working Papers w0132, New Economic School (NES).
    6. Tsypkin, G.G., 2021. "Analytical study of CO2–CH4 exchange in hydrate at high rates of carbon dioxide injection into a reservoir saturated with methane hydrate and gaseous methane," Energy, Elsevier, vol. 233(C).
    7. Ludovic Nicolas Legoix & Livio Ruffine & Jean-Pierre Donval & Matthias Haeckel, 2017. "Phase Equilibria of the CH 4 -CO 2 Binary and the CH 4 -CO 2 -H 2 O Ternary Mixtures in the Presence of a CO 2 -Rich Liquid Phase," Energies, MDPI, vol. 10(12), pages 1-11, December.
    8. George Pavlidis & Vassilios A. Tsihrintzis, 2018. "Environmental Benefits and Control of Pollution to Surface Water and Groundwater by Agroforestry Systems: a Review," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 1-29, January.
    9. Wang, Xiaolin & Zhang, Fengyuan & Lipiński, Wojciech, 2020. "Research progress and challenges in hydrate-based carbon dioxide capture applications," Applied Energy, Elsevier, vol. 269(C).
    10. Grzegorz W. Kolodko, 2009. "A Two-thirds Rate of Success: Polish Transformation and Economic Development, 1989-2008," WIDER Working Paper Series RP2009-14, World Institute for Development Economic Research (UNU-WIDER).
    11. Kudrin, A. & Gurvich, E., 2015. "Government Stimulus or Economic Incentives?," Journal of the New Economic Association, New Economic Association, vol. 26(2), pages 179-186.
    12. Larysa Tamilina & Natalya Tamilina, 2014. "Heterogeneity in Institutional Effects on Economic Growth: Theory and Empirical Evidence," European Journal of Comparative Economics, Cattaneo University (LIUC), vol. 11(2), pages 205-249, December.
    13. Popov, Vladimir, 2015. "Разрыв Между Югом И Западом По Уровню Экономического Развития Сокращается? [Catching up: Developing countries in pursuit of growth]," MPRA Paper 65893, University Library of Munich, Germany.
    14. Costanzo, Vincenzo & Yao, Runming & Xu, Tiantian & Xiong, Jie & Zhang, Qiulei & Li, Baizhan, 2019. "Natural ventilation potential for residential buildings in a densely built-up and highly polluted environment. A case study," Renewable Energy, Elsevier, vol. 138(C), pages 340-353.
    15. Simachev, Yuri & Kuzyk, Mikhail & Ivanov, Denis, 2012. "Fostering innovation in Russian companies in the post-crisis period: Opportunities and constraints," MPRA Paper 41284, University Library of Munich, Germany.
    16. Sturm, J. & Ennifar, H. & Erhard, S.V. & Rheinfeld, A. & Kosch, S. & Jossen, A., 2018. "State estimation of lithium-ion cells using a physicochemical model based extended Kalman filter," Applied Energy, Elsevier, vol. 223(C), pages 103-123.
    17. VADIM Ponkratov & В. Понкратов В., 2015. "Ресурсный Потенциал Нефтегазовой Отрасли Промышленности России И Стимулирование Повышения Эффективности Его Использования // Towards A More Efficient Use Of The Resource Potential Of The Russian Oil A," Экономика. Налоги. Право // Economics, taxes & law, ФГОБУ "Финансовый университет при Правительстве Российской Федерации" // Financial University under The Government of Russian Federation, issue 3, pages 94-101.
    18. Fofana, Daouda & Natarajan, Sadesh Kumar & Hamelin, Jean & Benard, Pierre, 2014. "Low platinum, high limiting current density of the PEMFC (proton exchange membrane fuel cell) based on multilayer cathode catalyst approach," Energy, Elsevier, vol. 64(C), pages 398-403.
    19. repec:mje:mjejnl:v:12:y:2017:i:1:p:125-140 is not listed on IDEAS
    20. Polterovich, Victor & Popov, Vladimir & Tonis, Alexander, 2008. "Mechanisms of Resource Curse, Economic Policy and Growth," MPRA Paper 20570, University Library of Munich, Germany.
    21. Ren, Junjie & Zeng, Siyu & Chen, Daoyi & Yang, Mingjun & Linga, Praveen & Yin, Zhenyuan, 2023. "Roles of montmorillonite clay on the kinetics and morphology of CO2 hydrate in hydrate-based CO2 sequestration1," Applied Energy, Elsevier, vol. 340(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:2:p:440-:d:309501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.